一种双核CPU的两个核能够同时的处理任务,现在有n个已知数据量的任务需要交给CPU处理,假设已知CPU的每个核1秒可以处理1kb,每个核同时只能处理一项任务。n个任务可以按照任意顺序放入CPU进行处理,现在需要设计一个方案让CPU处理完这批任务所需的时间最少,求这个最小的时间。
3072 3072 7168 3072 1024
输出:9216
输入描述:
输入包括两行:
第一行为整数n(1 ≤ n ≤ 50)
第二行为n个整数length[i](1024 ≤ length[i] ≤ 4194304),表示每个任务的长度为length[i]kb,每个数均为1024的倍数。
思想理解:完成所有n个任务需要sum时间,放入两个cpu中执行,假设第一个cpu处理时间为n1,第二个cpu时间为sum-n1,并假设n1 <= sum/2,sum-n1 >= sum/2,要使处理时间最小,则n1越来越靠近sum/2,最终目标是求max(n1,sum-n1)的最大值。
转换为01背包问题:已知最大容纳时间为sum/2,有n个任务,每个任务有其的完成时间,求最大完成时间。
JAVA实现:
public class wangyI_1 {
public static int getMax(int[] packTime, int n, int maxTime){
//bestTime[i][j]表示最大时间下的完成第i个任务所需的时间
int[][] bestTime = new int[n+1][maxTime+1];
for(int j = 0; j <= maxTime; j++ ){
//能容纳最大时间为j
for(int i = 0; i <= n; i++){
//当完成0个任务或者最大时间为0时,时间为0
if(i == 0 || j == 0) {
bestTime[i][j] = 0;
}
//当容纳最大时间小于单独完成第i件任务时间,则为前n-1完成任务时间总和
else if(j < packTime[i-1]){
bestTime[i][j] = bestTime[i-1][j];
}
//完成第i件任务时,两种情况:取最大值
//1.超过容纳最大时间,则为bestTime[i-1][j];
//2.没超过,则为bestTime[i-1][j-packTime[i-1]]+packTime[i-1])
//上述表示为在完成第i件任务时所需时间为bestTime[i-1][j-packTime[i-1]],然后在加上第i个任务时间为packTime[i-1]
else{
bestTime[i][j] = Math.max(bestTime[i-1][j], bestTime[i-1][j-packTime[i-1]]+packTime[i-1]);
}
}
}
return bestTime[n][maxTime];
}
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] packTime = new int[n];
int sum = 0;
for(int i = 0; i < n; i++){
packTime[i] = sc.nextInt()/1024;
sum += packTime[i];
}
int half = sum/2;
int res = getMax(packTime, n, half);
System.out.println(Math.max(res, sum-res)*1024);
}
}
输入:53072 3072 7168 3072 1024
输出:9216