GC 小结

(1)GC Roots对象:

  • 虚拟机栈中栈帧的本地变量表引用的对象
  • 本地方法栈JNI(Native方法)引用的对象
  • 方法区中的静态属性引用的对象
  • 方法区中的常量引用的对象

(2)虚引用:无法通过虚引用来取得一个对象实例,唯一目的在于能在这个对象被收集器回收时收到一个系统通知
(3)对象不可达时,进行第二次筛选标记。如果这个对象没有覆盖finalize方法或者虚拟机已经调用过finalize方法,则回收。如果覆盖了finalize方法,则将对象放在一个F-Queue队列中,由一个虚拟机建立的,低优先级的Finalizer线程去触发它,只要该方法中该对象重新与引用链上的任意一个对象建立关联,则这个对象逃逸,不被回收。

注意两点:对象可以在判定不可回收时可能完成自救;机会只有一次,因为一个对象的finalize方法最多只能被虚拟机调用一次

(4)永久带垃圾回收的主要内容:废弃常量和无用的类

废弃常量:没有任何对象引用这个常量

无用的类:该类的所有实例都被会回收,加载该类的ClassLoader已经被回收,该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法

(5)垃圾回收算法都是标记回收对象

标记清除:标记和清除效率低+空间碎片多

复制算法:不考虑内存碎片,移动堆顶指针,按顺序分配内存,运行高效   +  可用内存只有一半

标记整理:所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存

(6)新生代:Eden+From Survior+To Survior  (8:1:1),新生代每次可用内存约为90%,由老年代进行分配担保

(7)HotSpot算法实现:

  • 枚举根节点:OopMap数据结构(GC扫描时得到信息) +  Stop the World 
  • 安全点:指令中OopMap引用改变太多的问题 + 安全点Safepoint + 程序到达安全点才会GC + 如何让线程跑到最近安全点停下来 + 抢占式中断(不采用)+主动式中断
  • 安全区域:解决程序不执行时问题。 安全区域Safe Region:一段代码中引用关系不会发生变化

(8)G1收集器的特点

  • 并行与并发:缩短Stop fbe World 的时间
  • 分代收集:
  • 空间整合:从整体来看标记整理,从局部(狂歌Region)之间基于复制
  • 可预测的停顿:

注意:使用G1收集器时,Java的内存布局不再是新生代与老年代,而是将整个Java堆划分成多个大小相等的独立区域(Region)。新生代和老年代不再是物理隔离,它们都是一部分Region(不需要连续)的集合

G1避免不同Region的全堆扫描:G1中每个Region都有一个与之对应的Remembered Set

(10)对象优先在Eden分配,当Eden区不够时引发Minor GC

(11)长期存活的对象将进入老年代:对象年龄计数器(默认11),如果在survivor相同年龄所有对象大小的总和大于survivor空间的一半(单个survicor),年龄大于或等于该年龄的对象可以直接进入老年代,无需等到MaxTenuringThreshold中要求的年龄

(12)空间分配担保:发生Minor GC之前,先检查老年代最大可用连续空间是否大于新生代所有对象空间,若成立则Minor GC确保安全。

每次完成回收前是不知道有多少对象活下来,所以只好取之前每一次回收晋升到老年代对象容量的平均大小值作为经验值,与老年代的剩余空间进行比较,来决定是否需要Full GC。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值