对于位运算求两个数的平均值问题,(整形数据)
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
给出两个整数,求出结果。
刚开始看到这道题的做法就是x和y转换为二进制,然后计算出结果。在没有办法的情况下这样做也可以得出结果。
跟你想象的一点不差,这里确实有捷径。
题目中的&和^都是位运算,所以我们有必要研究数据的对位情况。任何数据只有3种情况。
- 1
- 2
- 3
- 1
- 2
- 3
那么它们分别什么诀窍呢?
举例子来说:0101 和1101 也就是x和y分别为5、13.这两个数据出现了所谓的3种对应位情况。
我们可以把数据拆开来看: 5=0000+100+00+1
13=1000+100+00+1
他们分为为第一位,第二位,…..
(1)当0和1对应时,x&y结果为0, x^y的结果呢?是不是就是x和y中那个对应位不为0的数据。
例如:上面数据的第四位0和1对位。此时x^y的结果就是1000,正是1101的第四位结果。
再右移一位,相当于除以2,所以:
- 1
- 1
(2)看1和1对应,1^1的结果为0,所以原函数后半部分不考虑,1&1结果为1,这也是(x+y)/2;
例如:第一位和第三位的对位,都为100,他们相与的结果和相加除以2相等,即x&y=(x+y)/2;
- 1
- 1
(3)0与0对应的时候,无论怎么样都是0,即也符合(x+y)/2.
综合上述三种情况,我们可以知道其实原函数返回就是(x+y)/2。
可改写为:
return (x+y)/2;