
AI
文章平均质量分 75
音乐学家方大刚
这个作者很懒,什么都没留下…
展开
-
【Python】使用OpenCV特征匹配检测图像中的【特定水印】
如果没有方向往哪里走都是前方做自己的光 不需要多亮曾受过的伤 会长出翅膀大雨冲刷过的天空会更加明亮流过泪的眼睛也一样做自己的光 悄悄的发亮逆风的方向 更容易飞翔世界怎样在于你凝视它的目光那未曾谋面过的远方或许就在身旁🎵 虎妹Huu、承桓《做自己的光》在图像处理中,识别和检测水印是一项重要任务,特别是在版权保护和验证领域。本文将介绍如何使用OpenCV和Python库来识别图像中的固定水印,即使水印的位置和角度可能不同。我们将使用特征匹配技术来实现这一目标。原创 2024-06-12 23:28:34 · 2591 阅读 · 6 评论 -
【Python】探索 SHAP 特征贡献度:解释机器学习模型的利器
SHAP,全称为 SHapley Additive exPlanations,是一种解释机器学习模型输出的方法。它基于合作博弈论中的 Shapley 值,通过计算每个特征对预测结果的贡献度,帮助我们理解复杂模型的决策过程。SHAP 值可以解释任何机器学习模型的预测结果,是一种模型无关的解释方法。原创 2024-06-02 23:07:11 · 3164 阅读 · 1 评论 -
【工具】探索 DOU:每用户数据使用量
DOU,全称为 Data of Use(每用户数据使用量),是衡量每个用户在一定时间段内使用数据服务的平均流量。DOU 通常按月度或季度计算,是电信运营商和互联网服务提供商评估用户数据使用情况和网络需求的重要指标。原创 2024-06-02 23:04:17 · 1404 阅读 · 0 评论 -
【Python】机器学习中的过采样和欠采样:处理不平衡数据集的关键技术
不平衡数据集是指某些类的样本数量显著多于其他类的情况。假设有一个二分类问题,其中类别0有950个样本,而类别1只有50个样本。由于类别0的样本数量远远多于类别1,模型在训练时更容易学习到类别0的特征,忽略类别1,从而导致分类性能下降。原创 2024-05-26 22:40:47 · 9480 阅读 · 0 评论 -
【Python】处理不平衡数据集的高级方法:ADASYN详解
ADASYN是一种自适应合成过采样技术,通过生成少数类的合成样本来平衡数据集。它的目标是增加分类器对少数类样本的学习能力,从而提高模型的整体性能。ADASYN的主要思想是根据样本的分布和分类难度,自适应地生成新的少数类样本。原创 2024-05-26 22:34:34 · 2590 阅读 · 0 评论 -
【Python】 使用SMOTE解决数据不平衡问题
SMOTE是一种过采样技术,通过生成合成的少数类样本来平衡数据集。其基本思想是基于少数类样本的特征向量,在其特征空间中进行插值,生成新的合成样本。SMOTE可以有效地减少因数据不平衡导致的模型偏差,提高分类器的性能。SMOTE是一种强大的过采样技术,可以有效地处理不平衡数据集,提升分类器的性能。通过imbalanced-learn库中的SMOTE实现,我们可以轻松地对少数类样本进行过采样,平衡数据集。在实际应用中,我们可以根据具体数据集的特点和需求,选择合适的过采样方法。原创 2024-05-26 22:16:08 · 1580 阅读 · 0 评论 -
【Python】利用TensorFlow和Keras进行不平衡数据集的分类任务
处理不平衡数据集是机器学习中的一个重要挑战。在本文中,我们展示了如何通过计算类权重并将其应用于模型训练来改进不平衡数据集的分类性能。使用TensorFlow和Keras,我们可以方便地构建、训练和评估模型,并通过类权重调整来提高模型的表现。原创 2024-05-26 21:57:14 · 974 阅读 · 0 评论 -
【Python】 XGBoost vs LightGBM:两大梯度提升框架的对比
XGBoost:由Tianqi Chen等人开发,是一种基于梯度提升决策树(GBDT)的开源框架。XGBoost因其高效、准确和可扩展性而受到广泛欢迎。LightGBM:由微软开发,是另一种基于GBDT的框架。LightGBM以其快速训练速度和低内存占用著称,特别适用于大数据场景。XGBoost:适用于各种数据集,算法成熟稳定,参数调节细腻。LightGBM:在大规模数据和高维数据上表现更佳,训练速度更快,内存占用更低,适合需要快速迭代的大数据场景。选择合适的框架取决于具体的应用场景和数据特征。原创 2024-05-26 21:09:55 · 2989 阅读 · 0 评论 -
【Python】LightGBM:快速高效的梯度提升框架
LightGBM(Light Gradient Boosting Machine)是由微软开发的一种高效的梯度提升框架。它被广泛用于数据科学和机器学习的各个领域,特别是在处理大型数据集和高维数据时表现出色。LightGBM不仅具有速度快、内存占用低的优点,还在准确性和可扩展性方面表现优异。LightGBM作为一种高效的梯度提升框架,在处理大规模数据和高维数据时具有显著优势。它通过一系列技术优化了计算效率和内存使用,使得模型训练速度更快、效果更好。原创 2024-05-26 21:03:13 · 1347 阅读 · 0 评论 -
【Python】 XGBoost模型的使用案例及原理解析
XGBoost是一种强大的梯度提升算法,通过集成多个弱学习器来提高模型的预测性能。其高效的实现和诸多优化技术使其在实际应用中表现优异。通过调节参数如学习率、最大深度和正则化参数,XGBoost能够处理不同类型的任务,尤其是在处理不平衡数据集时具有很好的性能表现。在本案例中,我们展示了如何使用XGBoost进行客户流失预测,并解释了其背后的关键原理。原创 2024-05-26 20:43:48 · 3084 阅读 · 0 评论 -
【AI】prompt记录
【代码】【AI】prompt记录。原创 2024-05-10 19:58:48 · 157 阅读 · 0 评论 -
【Python】逻辑回归原理 - 预测概率的利器
该爱就爱该恨的就恨要为自己保留几分女人独有的天真和温柔的天分要留给真爱你的人不管未来多苦多难有他陪你完成🎵 林忆莲《泪痕》逻辑回归是一种用于解决分类问题的统计学习方法,它通过建立一个线性模型来预测某个事件发生的概率。尽管名字中带有“回归”,但逻辑回归本质上是一种分类算法,常用于二分类问题,例如预测邮件是否为垃圾邮件,判断肿瘤是良性还是恶性等。原创 2024-05-07 23:52:42 · 615 阅读 · 0 评论 -
【Python】随机森林 - 集体智慧的决策力量
随机森林是一种用于分类和回归的集成学习算法。它由许多决策树组成,并通过集合的方式汇总所有树的预测结果。每一棵树在训练时都会从训练集随机抽取子集并独立训练,因此具有较强的抗过拟合能力。原创 2024-05-07 23:46:02 · 445 阅读 · 0 评论 -
【AI】探索 Prompt:如何与 ChatGPT 对话
简而言之,prompt是指在人机交互中,系统用来引导用户输入的信息或问题。在文本交互系统,如聊天机器人或命令行工具中,prompt通常是一个文本消息,用来提示用户回应或提供信息。原创 2024-04-28 00:03:05 · 1843 阅读 · 0 评论