【爬虫】 突破Cloudflare 5秒盾的艺术:使用Cloudscraper


无心生大用,有物不通神
                     🎵 闪现吃血王昭君《道德经》


在当今的互联网世界中,保护网站免受恶意访问变得尤为重要。Cloudflare是一种流行的解决方案,提供了多种安全功能,包括一个被广泛称为"5秒盾"(5 Second Challenge)的机制。这个机制要求访问者等待5秒钟,Cloudflare在这期间验证访问者不是机器人。这对于人类用户来说可能只是轻微不便,但对于需要自动化抓取网站数据的开发者来说,则可能成为一个大问题。本文将探讨如何使用Python库Cloudscraper来突破这一防御机制。

为什么需要Cloudscraper?

Cloudflare的5秒盾是通过检查浏览器的JavaScript执行能力来工作的,因为大多数爬虫和自动化脚本不会执行JavaScript。Cloudscraper是一个Python库,设计用来模拟浏览器的行为,包括执行JavaScript,从而能够绕过Cloudflare的检查。

如何使用Cloudscraper

以下是使用Cloudscraper库的一个简单示例,旨在说明其基本用法和如何配置它来模拟特定的浏览器环境。

import cloudscraper
# 创建一个Cloudscraper实例,设置延迟和模拟的浏览器环境
scraper = cloudscraper.create_scraper(delay=5, browser={
    'browser': 'chrome',
    'platform': 'linux',
    'mobile': False,
})

# 使用代理和Cloudscraper实例来访问一个网页
resp = scraper.get('https://webcache.googleusercontent.com/search?q=cache:https://www.truepeoplesearch.com/find/i',
                   proxies={'http': 'http://127.0.0.1:2333', 'https': 'http://127.0.0.1:2333'})

## 打印响应的文本和状态码
print(resp.text)
print(resp.status_code)

代码逻辑与原理

创建Cloudscraper实例: 使用cloudscraper.create_scraper()方法创建一个Cloudscraper对象。可以通过delay参数设置每个请求之间的延迟,以避免被服务器认为是攻击。browser参数用于模拟特定的浏览器环境,这里模拟的是Linux平台上的Chrome浏览器。

设置代理: 为了增加匿名性或绕过IP限制,代码中使用了代理服务器。proxies参数接受一个字典,指定HTTP和HTTPS请求应该使用的代理。

发送请求: 使用scraper.get()方法发送GET请求。这个方法模拟浏览器的请求,包括执行必要的JavaScript,这样即使是受Cloudflare保护的网站也能成功访问。

处理响应: 打印出响应内容(resp.text)和状态码(resp.status_code),以便于调试和验证是否成功绕过Cloudflare的检查。

结论

Cloudscraper提供了一种有效的方式来绕过Cloudflare的5秒盾保护,使得
开发者可以自动化抓取那些使用了这一防御机制的网站。通过模拟真实的浏览器行为,Cloudscraper能够执行JavaScript代码,从而通过Cloudflare的检测。这使得开发者能够访问和收集重要数据,而无需手动干预或放弃因防护机制而难以抓取的网站。

<think>好的,用户想了解如何离线使用DeepSeek。首先,我需要明确DeepSeek是什么。根据之前的信息,DeepSeek是一个AI助手,通常需要联网使用,尤其是在线API。但用户可能希望在没有网络的情况下也能使用,比如在本地运行。 接下来,我得考虑用户的实际需求。离线使用可能涉及到模型本地部署、数据隐私或网络限制等因素。用户可能是一名开发者,想在内部系统中集成AI功能,或者普通用户想在没有网络的环境下使用。 然后,我需要回忆DeepSeek是否提供离线解决方案。通常,像这样的AI服务大多依赖云端计算,但有些公司会提供本地部署的选项,尤其是企业版。可能需要查阅DeepSeek的官方文档或联系他们的支持团队确认。 如果官方不支持,替代方案有哪些?比如使用类似的开源模型,如LLAMA、ChatGLM等,这些可以在本地部署。需要指导用户如何获取这些模型,配置环境,运行推理。 另外,用户可能对技术细节不太熟悉,所以步骤需要详细但易懂。比如安装Python、下载模型权重、使用Hugging Face库等。同时要提到硬件要求,因为大模型需要较高的GPU资源。 还要考虑可能的误区,比如用户可能以为离线使用就是完全免费,但其实本地部署可能需要购买硬件或企业许可证。需要提醒相关成本和法律问题,比如模型许可证和数据处理合规性。 最后,总结建议:先联系DeepSeek官方,若无解决方案再考虑开源替代,并评估硬件和技术的可行性。确保用户了解每一步的可能挑战,比如技术门槛和资源需求。</think>要离线使用 DeepSeek,需要根据具体用途采取不同方案。以下是三种常见场景的解决方案,请根据你的需求选择: ### 方案一:本地部署模型(开发者向) 1. **获取模型权限** - 联系 DeepSeek 官方确认是否提供离线 SDK/容器化部署方案 - 企业用户可洽谈私有化部署协议(通常需签订 NDA 和商务合同) 2. **硬件准备** - GPU 集群:推荐 NVIDIA A100/A800(FP16 精度需 80G 显存/模型副本) - 存储:需预留 500GB+ 的 NVMe SSD 用于模型缓存 3. **部署流程示例** ```bash # 使用官方提供的 Docker 镜像(假设) docker pull deepseek/llm-runtime:7.0-cuda11.8 docker run -gpus all -v /model_cache:/app/models deepseek-llm --model_version=pro-v1.2 ``` ### 方案二:本地知识库应用(企业文档处理) 1. 使用 LangChain + DeepSeek API 封装工具 ```python from langchain_community.embeddings import DeepSeekEmbeddings from langchain_chroma import Chroma # 离线嵌入存储 embeddings = DeepSeekEmbeddings(offline_mode=True, model_path="./deepseek-emb") vector_db = Chroma(persist_directory="./db", embedding_function=embeddings) # 添加本地文档 vector_db.add_documents(["/internal/docs/2024-Q3-report.pdf"]) ``` ### 方案三:终端设备轻量化(移动端/边缘计算) 1. 模型量化方案 - 使用 DeepSeek-Mini 2B 轻量版(INT8 量化后仅需 2.3GB) - 通过 ONNX Runtime 部署: ```cpp // Android 示例(需 NDK 编译) Ort::SessionOptions session_options; session_options.AppendConfigEntry("session.optimized_model_filepath", "deepseek-mini2b-int8.onnx"); auto session = Ort::Session(env, model_path, session_options); ``` ### 注意事项 1. 法律合规:需取得模型分发许可证(DeepSeek 商用授权费约 $3.5/百万 tokens) 2. 安全审计:建议部署前进行模型权重完整性校验(SHA-256 校验值需向官方获取) 3. 硬件成本参考: - 单节点部署:A100 80GB 服务器 ≈ $15,000/月(AWS p4d.24xlarge) - 边缘设备:NVIDIA Jetson AGX Orin 64GB ≈ $2,000 建议先通过 DeepSeek 官网的「企业解决方案」通道(https://enterprise.deepseek.com)提交需求表单,其技术团队通常会在 2 个工作日内提供定制化部署方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值