FATE联邦学习
文章平均质量分 55
Doodlera
这个作者很懒,什么都没留下…
展开
-
FATE联邦学习笔记(一)
学习联邦学习的概念及方法,尝试微众银行FATE框架。单机版教程参考:横向联邦学习实践集群版教程参考:使用FATE进行图片识别的深度神经网络联邦学习实际使用中提出了这样一个问题:在案例中,mnist数据集是随机划分的,即每一个数据集内同时存在0~9全部标签。但是生产中存在这样一种情况:不同参与者拥有的标签完全不同,比如一方拥有0 ~4,另一方拥有 5 ~9。模拟这种情况进行尝试。在不改变算法配置的情况下报错。...原创 2021-09-28 09:21:19 · 1737 阅读 · 0 评论 -
联邦学习纵向逻辑回归公式推导
原文链接【技术博客】纵向联邦学习简介及实现——MomodelAI在研究纵向联邦学习时,为了对细节有更深入的理解,查询了一些资料并对图中的公式(出自上文引用)进行了推导。推导过程如下。其中,1.未加入正则化项。2.对B求导与A的结果类似,改变相应下标即可3.推导过程中,Xθ的相乘顺序经常混淆,这一点和原图中的公式稍有不同。同时完成了《联邦学习》一书中的纵向联邦线性回归(P78)的公式推导。思路类似,相对来说比较简单,就不再列出了。...原创 2021-03-09 14:01:37 · 1883 阅读 · 1 评论 -
FATE联邦学习笔记(二)——如何在FATE上使用卷积
学习自定义算法模块。根据github教程和官方视频学习。原计划编写一个reshape模块。目前的理解:FATE上传的数据格式支持有限。数据是一维的,无法使用神经网络的卷积等操作。原打算通过: 数据上传(一维数据)——数据转换(转换为多维数据)——算法模块(卷积神经网络)这样的流程实现。目前的问题在于FATE使用的数据格式DTable。...原创 2020-06-18 16:44:13 · 1156 阅读 · 1 评论