RNN
Doodlera
这个作者很懒,什么都没留下…
展开
-
FATE联邦学习笔记(二)——如何在FATE上使用卷积
学习自定义算法模块。根据github教程和官方视频学习。原计划编写一个reshape模块。目前的理解:FATE上传的数据格式支持有限。数据是一维的,无法使用神经网络的卷积等操作。原打算通过: 数据上传(一维数据)——数据转换(转换为多维数据)——算法模块(卷积神经网络)这样的流程实现。目前的问题在于FATE使用的数据格式DTable。...原创 2020-06-18 16:44:13 · 1156 阅读 · 1 评论 -
RNN学习笔记(疑惑点)
1.RNN中的input:batch_size,time_steps,input_size.batch_size是数据的批次,将全部数据划分为n批进行训练;time_steps为时间步,比如输入为一句话,每一步则为每一个字;input_size为输入数据本身的维度;(1) 1行数据 * batch = 全部数据(2) 1行数据被分为了 n个timestep所以要把输入数据转化为三维。...原创 2019-10-25 10:24:13 · 548 阅读 · 0 评论