相同点:
- 两个都是线性模型,线性回归是普通线性模型,逻辑回归是广义线性模型
- 表达形式上,逻辑回归是线性回归套上了一个Sigmoid函数
- 参数估计上,都是用极大似然估计的方法估计参数
区别
- 线性回归优化的目标函数是均方差(最小二乘),而逻辑回归优化的是似然函数(交叉熵)
- 线性归回要求自变量与因变量呈线性关系,而逻辑回归没有要求
- 线性回归分析的是因变量自身与自变量的关系,而逻辑回归研究的是因变量取值的概率与自变量的概率
- 逻辑回归处理的是分类问题,线性回归处理的是回归问题,这也导致了两个模型的取值范围不同:0-1和实数域
- 线性回归假设响应变量服从正态分布,逻辑回归假设响应变量服从伯努利分布
- 参数估计上,都是用极大似然估计的方法估计参数(高斯分布导致了线性模型损失函数为均方差,伯努利分布导致逻辑回归损失函数为交叉熵)