经验误差(empirical error):也叫训练误差(training error),模型在训练集上的误差。
泛化误差(generalization error):模型在新样本集(测试集)上的误差称为“泛化误差”
本文探讨了经验误差和泛化误差的概念。经验误差,即训练误差,是指模型在训练集上的表现;而泛化误差则关注模型对未见过的新样本集的预测精度。这两个指标是评估模型性能的关键。
经验误差(empirical error):也叫训练误差(training error),模型在训练集上的误差。
泛化误差(generalization error):模型在新样本集(测试集)上的误差称为“泛化误差”

被折叠的 条评论
为什么被折叠?
