kmeans-聚类,优缺点

 

K-Means要点:

    1)对于K-Means算法,首先要注意的是k值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的k值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的k值。

    2)在确定了k的个数后,我们需要选择k个初始化的质心,就像上图b中的随机质心。由于我们是启发式方法,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心,最好这些质心不能太近。

  •     输入是样本集,聚类的簇树k,最大迭代次数N
  •     输出是簇划分 

步骤 :

    1) 从数据集D中随机选择k个样本作为初始的k个质心向量: 

    2)对于n=1,2,...,N

      a) 将簇划分C初始化为

      b) 对于i=1,2...m,计算样本和各个质心向量的距离:,将标记最小的为所对应的类别。此时更新

      c) 对于j=1,2,...,k,对中所有的样本点重新计算新的质心

      e) 如果所有的k个质心向量都没有发生变化,则转到步骤3)

    3) 输出簇划分

 

K-Means初始化优化K-Means++

    k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心。如果仅仅是完全随机的选择,有可能导致算法收敛很慢。K-Means++算法就是对K-Means随机初始化质心的方法的优化。

    K-Means++的对于初始化质心的优化策略也很简单,如下:

    a)  从输入的数据点集合中随机选择一个点作为第一个聚类中心
    b) 对于数据集中的每一个点,计算它与已选择的聚类中心中最近聚类中心的距离
    c) 选择一个新的数据点作为新的聚类中心,选择的原则是:较大的点,被选取作为聚类中心的概率较大
    d) 重复b和c直到选择出k个聚类质心
    e) 利用这k个质心来作为初始化质心去运行标准的K-Means算法

K-Means距离计算优化elkan K-Means

    在传统的K-Means算法中,我们在每轮迭代时,要计算所有的样本点到所有的质心的距离,这样会比较的耗时。那么,对于距离的计算有没有能够简化的地方呢?elkan K-Means算法就是从这块入手加以改进。它的目标是减少不必要的距离的计算。那么哪些距离不需要计算呢?

    elkan K-Means利用了两边之和大于等于第三边,以及两边之差小于第三边的三角形性质,来减少距离的计算。

    第一种规律是对于一个样本点和两个质心。如果我们预先计算出了这两个质心之间的距离,则如果计算发现,我们立即就可以知道。此时我们不需要再计算,也就是说省了一步距离计算。

    第二种规律是对于一个样本点和两个质心。我们可以得到。这个从三角形的性质也很容易得到。

    利用上边的两个规律,elkan K-Means比起传统的K-Means迭代速度有很大的提高。但是如果我们的样本的特征是稀疏的,有缺失值的话,这个方法就不使用了,此时某些距离无法计算,则不能使用该算法。

 

大样本优化Mini Batch K-Means

    在统的K-Means算法中,要计算所有的样本点到所有的质心的距离。如果样本量非常大,比如达到10万以上,特征有100以上,此时用传统的K-Means算法非常的耗时,就算加上elkan K-Means优化也依旧。在大数据时代,这样的场景越来越多。此时Mini Batch K-Means应运而生。

    顾名思义,Mini Batch,也就是用样本集中的一部分的样本来做传统的K-Means,这样可以避免样本量太大时的计算难题,算法收敛速度大大加快。当然此时的代价就是我们的聚类的精确度也会有一些降低。一般来说这个降低的幅度在可以接受的范围之内。

    在Mini Batch K-Means中,我们会选择一个合适的批样本大小batch size,我们仅仅用batch size个样本来做K-Means聚类。那么这batch size个样本怎么来的?一般是通过无放回的随机采样得到的。

    为了增加算法的准确性,我们一般会多跑几次Mini Batch K-Means算法,用得到不同的随机采样集来得到聚类簇,选择其中最优的聚类簇。

K-Means与KNN

  1.     K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
  2.     当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

K-Means小结

    K-Means是个简单实用的聚类算法,这里对K-Means的优缺点做一个总结。

    K-Means点:

    1)原理比较简单,实现也是很容易,收敛速度快。

    2)聚类效果较优。

    3)算法的可解释度比较强。

    4)主要需要调参的参数仅仅是簇数k。

    K-Means缺点:

    1)K值的选取不好把握(改进:可以通过在一开始给定一个适合的数值给k,通过一次K-means算法得到一次聚类中心。对于得到的聚类中心,根据得到的k个聚类的距离情况,合并距离最近的类,因此聚类中心数减小,当将其用于下次聚类时,相应的聚类数目也减小了,最终得到合适数目的聚类数。可以通过一个评判值E来确定聚类数得到一个合适的位置停下来,而不继续合并聚类中心。重复上述循环,直至评判函数收敛为止,最终得到较优聚类数的聚类结果)。

    2)对于不是凸的数据集比较难收敛(改进:基于密度的聚类算法更加适合,比如DESCAN算法)

    3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。

    4) 采用迭代方法,得到的结果只是局部最优。

    5) 对噪音和异常点比较的敏感(改进1:离群点检测的LOF算法,通过去除离群点后再聚类,可以减少离群点和孤立点对于聚类效果的影响;改进2:改成求点的中位数,这种聚类方式即K-Mediods聚类(K中值))。

           6)初始聚类中心的选择(改进1:k-means++;改进2:二分K-means,相关知识详见这里这里)。

### KMeans聚类与系统聚类(层次聚类)的优缺点对比 #### 一、KMeans聚类的优点 1. **效率较高** KMeans算法的时间复杂度较低,尤其适用于大规模数据集。它通过迭代优化目标函数来减少计算开销[^2]。 2. **易于理解和实现** KMeans算法逻辑简单明了,便于编程实现,并且许多现代工具库(如scikit-learn)都提供了现成的接口。 3. **对球形簇效果较好** 如果数据中的簇呈现较为规则的形状(例如圆形或椭圆),那么KMeans能够很好地捕捉这些结构[^1]。 4. **收敛速度快** 在大多数情况下,KMeans能够在较少的迭代次数内达到稳定状态。 #### 二、KMeans聚类的缺点 1. **需预先指定簇的数量 \(k\)** 用户必须事先知道要划分为多少个簇,而这在实际问题中往往难以确定[^2]。 2. **对初始条件敏感** 初始质心的选择会极大地影响最终的结果质量。不同的初始化可能导致局部最优解而非全局最优解[^3]。 3. **假设簇为凸形区域** 它假定所有的簇都是具有相同大小和方向性的超球体形式,因此对于非线性边界或者复杂的几何形态表现不佳[^1]。 4. **受离群点干扰大** 单独存在的极端值可能会扭曲整个模型的表现,因为它们会被当作单独的一类处理。 #### 三、系统聚类(层次聚类)的优点 1. **无需提前定义簇数** 层次聚类不需要像KMeans那样显式地提供期望得到的簇数目;相反,它可以生成一棵树型结构供后续裁剪决定合适的层数。 2. **适应性强** 可以灵活应对各种类型的分布模式,包括链状、环状以及其他不规则形状的数据集合[^1]。 3. **可视化直观清晰** 结果通常表现为一张树状图(dendrogram),使得人们可以直接观察不同水平上的分割状况以及各类别间的亲疏远近关系。 #### 四、系统聚类(层次聚类)的缺点 1. **时间成本高昂** 特别是在面对海量观测对象时,由于涉及到两两配对距离矩阵的操作,整体运算负担非常沉重[^2]。 2. **内存占用巨大** 构建完整的相似性表需要大量的存储空间支持,在资源有限的情况下可能成为瓶颈因素之一。 3. **不可逆过程** 每一步合并/分裂动作一旦做出便不能再更改,这意味着错误累积效应容易发生,尤其是在早期阶段产生的偏差很难纠正过来[^1]。 --- ### 示例代码片段 以下是两种方法简单的Python实现例子: ```python from sklearn.cluster import KMeans, AgglomerativeClustering import numpy as np # Sample Data Generation X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]) # Applying KMeans Algorithm kmeans_model = KMeans(n_clusters=2).fit(X) labels_kmeans = kmeans_model.labels_ # Applying Hierarchical Clustering hierarchical_model = AgglomerativeClustering(n_clusters=2).fit(X) labels_hierarchical = hierarchical_model.labels_ ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值