洛谷多维DP(2):P1006 传纸条,P1004 方格取数——多路径不重复的棋盘DP

P1006 传纸条

在这里插入图片描述

输入输出样例
输入 #1复制
3 3
0 3 9
2 8 5
5 7 0
输出 #1复制
34

要点目录

1.状态方程的获得
2.计算顺序与重复路径的思考(有效方案)

1 状态方程的获得

这个需要2条路线,因此考虑使用4维dp应该是比较自然的,考虑两者同时走,因此可以看成都从左上出发,一起到达右下角。

定义dp[i][j][k][l]为小渊在[i,j],小轩在[k,l]时候的最大的好感度,很容易得到以下的状态转移方程。

dp[i][j][k][l] = max({ dp[i - 1][j][k - 1][l],dp[i - 1][j][k][l - 1],dp[i][j - 1][k - 1][l],dp[i][j - 1][k][l - 1] }) + mat[i][j] + mat[k][l];

但是问题是,题目中提到的,不允许经过重复的路径,应该如何体现?因为动态规划是不考虑前者的路径过程的,我们不进行记录,因此这个问题确实有些棘手。

2 计算顺序与重复路径的思考(有效方案)

在说明之前先说一些本题的基本事实:
1、[i,j]和[k,l]是一起走的,也就是说要达到[i,j,k,l]必须是左右都走一步,不能左边走右边不走,因此状态方程里是有4个变量进行求最大值。
2、对于i == k , j == l的情况,此时左边和右边是在同一个位置的,此时状态为[i,j,i,j],即dp[i][j][i][j],这种状态是没有意义的</

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值