用python绘制ROC曲线并计算AUC

转载 2018年04月17日 16:42:58

AUC介绍

AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC ,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools1有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。

AUC计算

AUC的计算分为下面三个步骤:

  1. 计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
  2. 根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
  3. 将坐标点连成曲线之后计算其曲线下面积,就是AUC的值
    #! -*- coding=utf-8 -*-
    import pylab as pl
    from math import log,exp,sqrt
    
    
    evaluate_result="you file path"
    db = []  #[score,nonclk,clk]
    pos, neg = 0, 0 
    with open(evaluate_result,'r') as fs:
    	for line in fs:
    		nonclk,clk,score = line.strip().split('\t')
    		nonclk = int(nonclk)
    		clk = int(clk)
    		score = float(score)
    		db.append([score,nonclk,clk])
    		pos += clk
    		neg += nonclk
    		
    		
    
    db = sorted(db, key=lambda x:x[0], reverse=True)
    
    #计算ROC坐标点
    xy_arr = []
    tp, fp = 0., 0.			
    for i in range(len(db)):
    	tp += db[i][2]
    	fp += db[i][1]
    	xy_arr.append([fp/neg,tp/pos])
    
    #计算曲线下面积
    auc = 0.			
    prev_x = 0
    for x,y in xy_arr:
    	if x != prev_x:
    		auc += (x - prev_x) * y
    		prev_x = x
    
    print "the auc is %s."%auc
    
    x = [_v[0] for _v in xy_arr]
    y = [_v[1] for _v in xy_arr]
    pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
    pl.xlabel("False Positive Rate")
    pl.ylabel("True Positive Rate")
    pl.plot(x, y)# use pylab to plot x and y
    pl.show()# show the plot on the screen
    svm预测结果
    输入的数据集可以参考

    其格式为:

    nonclk \t clk \t score
    

    其中:

    1. nonclick:未点击的数据,可以看做负样本的数量
    2. clk:点击的数量,可以看做正样本的数量
    3. score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量

    运行的结果为:

    注意

    上面贴的代码:

    1. 只能计算二分类的结果(至于二分类的标签随便处理)
    2. 上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算

    参考

Python:机器学习的ROC曲线、AUC计算,以及相应的代码

ROC曲线的原理以及绘制方法参考点击打开链接,这里主要是对原理部分的代码实现。 对于每一个给定的阈值threshold,我们都可以算出有关的TPR、FPR参数,这里我写了以下函数来实现该功能,函数的...
  • whut_ldz
  • whut_ldz
  • 2017-12-22 17:23:44
  • 520

python sklearn画ROC曲线

preface:最近《生物信息学》多次谈到AUC,ROC这两个指标,正在做的project,要求画ROC曲线,sklearn里面有相应的函数,故学习学习。 AUC: ROC: 具体使用参考sklear...
  • u010454729
  • u010454729
  • 2015-04-17 16:11:04
  • 24468

用sklearn绘制ROC曲线

用sklearn绘制ROC曲线
  • HelloWorld_Xia
  • HelloWorld_Xia
  • 2016-08-05 21:01:21
  • 2994

ROC曲线和EER/AUC的计算方式

ROC和AUC定义ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用...
  • maggie_J
  • maggie_J
  • 2017-04-19 20:09:02
  • 1258

使用R进行分类时,ROC的绘制和AUC的计算

在之前的这篇日志中,我简单介绍了使用R进行Logistic Regression时,Recall,Precision,TPR,FPR等等的计算,但是如果依照这种方法绘制ROC曲线(关于ROC和AU...
  • qysh123
  • qysh123
  • 2015-02-23 11:49:01
  • 4827

ROC曲线绘制以及AUC分数计算

  • 2018年03月06日 15:58
  • 1KB
  • 下载

用tensorflow画ROC曲线

1. 先准备好你的数据文件,csv格式,该文件共3列,第一列是数据id,第2列是预测分数(0到1),第3列是数据的label(0或1) 2. 运行下面的python程序:python tf_roc....
  • mao_feng
  • mao_feng
  • 2017-01-25 21:39:44
  • 4261

ROC曲线与AUC计算

ROC曲线绘制与AUC计算           致谢 多位博主的无私分享。 参考文献 [1] http://blog.csdn.net/chjjunking/ar...
  • mytestmy
  • mytestmy
  • 2014-04-21 20:42:37
  • 8180

用Python画ROC曲线

在分类模型中,ROC曲线和AUC值经常作为衡量一个模型拟合程度的指标。最近在建模过程中需要作出模型的ROC曲线,参考了sklearn官网的教程和博客。现在将自己的学习过程总结如下,希望对初次接触的同学...
  • lz_peter
  • lz_peter
  • 2017-09-21 17:44:23
  • 3895

py2.7 : 《机器学习实战》 Adaboost 2.24号:ROC曲线的绘制和AUC计算函数

前言:可以将不同的分类器组合,这种组合结果被称为集成方法  、 元算法 使用:1.不同算法的集成 2.同一算法下的不同设置集成 3.不同部分分配给不同分类器的集成 算法介绍:AdaBoost 优点:泛...
  • qq_33638791
  • qq_33638791
  • 2017-02-21 17:17:13
  • 779
收藏助手
不良信息举报
您举报文章:用python绘制ROC曲线并计算AUC
举报原因:
原因补充:

(最多只允许输入30个字)