用python绘制ROC曲线并计算AUC

AUC介绍

AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC ,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools1有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。

AUC计算

AUC的计算分为下面三个步骤:

  1. 计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
  2. 根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
  3. 将坐标点连成曲线之后计算其曲线下面积,就是AUC的值
    #! -*- coding=utf-8 -*-
    import pylab as pl
    from math import log,exp,sqrt
    
    
    evaluate_result="you file path"
    db = []  #[score,nonclk,clk]
    pos, neg = 0, 0 
    with open(evaluate_result,'r') as fs:
    	for line in fs:
    		nonclk,clk,score = line.strip().split('\t')
    		nonclk = int(nonclk)
    		clk = int(clk)
    		score = float(score)
    		db.append([score,nonclk,clk])
    		pos += clk
    		neg += nonclk
    		
    		
    
    db = sorted(db, key=lambda x:x[0], reverse=True)
    
    #计算ROC坐标点
    xy_arr = []
    tp, fp = 0., 0.			
    for i in range(len(db)):
    	tp += db[i][2]
    	fp += db[i][1]
    	xy_arr.append([fp/neg,tp/pos])
    
    #计算曲线下面积
    auc = 0.			
    prev_x = 0
    for x,y in xy_arr:
    	if x != prev_x:
    		auc += (x - prev_x) * y
    		prev_x = x
    
    print "the auc is %s."%auc
    
    x = [_v[0] for _v in xy_arr]
    y = [_v[1] for _v in xy_arr]
    pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
    pl.xlabel("False Positive Rate")
    pl.ylabel("True Positive Rate")
    pl.plot(x, y)# use pylab to plot x and y
    pl.show()# show the plot on the screen
    svm预测结果
    输入的数据集可以参考

    其格式为:

    nonclk \t clk \t score
    

    其中:

    1. nonclick:未点击的数据,可以看做负样本的数量
    2. clk:点击的数量,可以看做正样本的数量
    3. score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量

    运行的结果为:

    注意

    上面贴的代码:

    1. 只能计算二分类的结果(至于二分类的标签随便处理)
    2. 上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算

    参考

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页