十大经典排序算法-快速排序算法详解

十大经典排序算法

一、什么是快速排序

1.概念

快速排序(Quick Sort)是从冒泡排序算法演变而来的,实际上是在冒泡排序基础上的递归分治法。快速排序在每一轮挑选一个基准元素,并让其他比它大的元素移动到数列一边,比它小的元素移动到数列的另一边,从而把数列拆解成了两个部分

2.算法原理

这是一个无序数列:4、5、8、1、7、2、6、3,我们要将它按从小到大排序。按照快速排序的思想,我们先选择一个基准元素,进行排序
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BeR19ua8-1592286987672)(./快速1.png)]
我们选取4为我们的基准元素,并设置基准元素的位置为index,设置两个指针left和right,分别指向最左和最右两个元素
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6EFkeo4Z-1592286987676)(./快速2.png)]
接着,从right指针开始,把指针所指向的元素和基准元素做比较,如果比基准元素大,则right指针向左移动,如果比基准元素小,则把right所指向的元素填入index中

3和4比较,3比4小,将3填入index中,原来3的位置成为了新的index,同时left右移一位
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2ahJscJM-1592286987677)(./快速3.png)]
然后,我们切换left指针进行比较,如果left指向的元素小于基准元素,则left指针向右移动,如果元素大于基准元素,则把left指向的元素填入index中

5和4比较,5比4大,将5填入index中,原来5的位置成为了新的index,同时right左移一位
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-28sZ32EQ-1592286987678)(./快速4.png)]
接下来,我们再切换到right指针进行比较,6和4比较,6比4大,right指针左移一位
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BmFtPyoS-1592286987680)(./快速5.png)]
2和4比较,2比4小,将2填入index中,原来2的位置成为新的index,left右移一位
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-At3QbmBx-1592286987682)(./快速6.png)]
随着left右移,right左移,最终left和right重合
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WfcU8kdr-1592286987684)(./快速7.png)]
此时,我们将基准元素填入index中,这时,基准元素左边的都比基准元素小,右边的都比基准元素大,这一轮交换结束
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VjOiHUyg-1592286987685)(./快速8.png)]
第一轮,基准元素4将序列分成了两部分,左边小于4,右边大于4,第二轮则是对拆分后的两部分进行比较

此时,我们有两个序列需要比较,分别是3、2、1和7、8、6、5,重新选择左边序列的基准元素为3,右边序列的基准元素为7
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xTPfcLIT-1592286987686)(./快速9.png)]
第二轮排序结束后,结果如下所示
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YvVyuVCL-1592286987686)(./快速10.png)]
此时,3、4、7为前两轮的基准元素,是有序的,7的右边只有8一个元素也是有序的,因此,第三轮,我们只需要对1、2和5、6这两个序列进行排序
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gDg3vGlK-1592286987687)(./快速11.png)]
第三轮排序结果如下所示
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BT70Q2eJ-1592286987690)(./快速12.png)]
至此所有的元素都是有序的

3.算法实现
function sort(arr, startIndex, endIndex) {
    // 递归结束条件:startIndex大于等于endIndex的时候
    if (startIndex >= endIndex) {
        return;
    }
    // 得到基准元素的位置
    let pivotIndex = partition(arr, startIndex, endIndex);
    sort(arr, startIndex, pivotIndex - 1);
    sort(arr, pivotIndex + 1, endIndex);
}

function partition(arr, startIndex, endIndex) {
    // 选择第一个位置的元素作为基准元素
    let pivot = arr[startIndex];
    let left = startIndex;
    let right = endIndex;
    let index = startIndex;

    // 外循环在左右指针重合或者交错的时候结束
    while (right > left) {
        // right指针从右向左进行比较
        while (right > left) {
            if (arr[right] < pivot) {
                arr[left] = arr[right];
                index = right;
                left++;
                break;
            }
            right--;
        }
        // left指针从左向右进行比较
        while (right > left) {
            if (arr[left] > pivot) {
                arr[right] = arr[left];
                index = left;
                right--;
                break;
            }
            left++;
        }
    }
    arr[index] = pivot;
    return index;
}

let arr = [4, 5, 8, 1, 7, 2, 6, 3];
sort(arr, 0, arr.length - 1);
console.log(arr);

三、快速排序算法特点

1.时间复杂度

快速排序算法在分治法的思想下,原数列在每一轮被拆分成两部分,每一部分在下一轮又分别被拆分成两部分,直到不可再分为止,平均情况下需要logn轮,因此快速排序算法的平均时间复杂度是O(nlogn)

在极端情况下,快速排序算法每一轮只确定基准元素的位置,时间复杂度为O(N^2)

2.空间复杂度

快速排序算法排序过程中只是使用数组原本的空间进行排序,因此空间复杂度为O(1)

3.稳定性

快速排序算法在排序过程中,可能使相同元素的前后顺序发生改变,所以快速排序是一种不稳定排序算法


另外推荐一个开发者小工具网站,个人觉得里面的Json格式化功能很强大,报错很详细

https://tinyutil.cn/

还可以输入表达式进行内容选取,对于复杂json非常多层级的内容展现非常用用处
在这里插入图片描述

  • 169
    点赞
  • 972
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
当谈到排序算法时,有许多经典排序算法可以使用。以下是十大常见的排序算法及其详细解释,使用Python编写的示例代码: 1. 冒泡排序(Bubble Sort): 冒泡排序是一种简单的交换排序算法。它重复地遍历要排序的列表,比较相邻的元素并交换它们,直到整个列表排序完成。 ```python def bubble_sort(arr): n = len(arr) for i in range(n-1): for j in range(n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return arr ``` 2. 选择排序(Selection Sort): 选择排序是一种简单直观的排序算法。它将列表分为已排序和未排序两部分,每次从未排序部分选择最小的元素,并将其放入已排序部分的末尾。 ```python def selection_sort(arr): n = len(arr) for i in range(n-1): min_idx = i for j in range(i+1, n): if arr[j] < arr[min_idx]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] return arr ``` 3. 插入排序(Insertion Sort): 插入排序是一种简单且高效的排序算法。它将列表分为已排序和未排序两部分,每次从未排序部分选择一个元素,并将其插入到已排序部分的正确位置。 ```python def insertion_sort(arr): n = len(arr) for i in range(1, n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key return arr ``` 4. 快速排序(Quick Sort): 快速排序是一种高效的分治排序算法。它选择一个基准元素,将列表分为小于基准值和大于基准值的两部分,然后递归地对这两部分进行排序。 ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` 5. 归并排序(Merge Sort): 归并排序是一种稳定的排序算法,它采用分治策略将列表分为较小的部分,然后递归地合并这些部分以获得排序结果。 ```python def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left = arr[:mid] right = arr[mid:] left = merge_sort(left) right = merge_sort(right) return merge(left, right) def merge(left, right): result = [] i, j = 0, 0 while i < len(left) and j < len(right): if left[i] < right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) j += 1 result.extend(left[i:]) result.extend(right[j:]) return result ``` 6. 堆排序(Heap Sort): 堆排序利用堆的性质进行排序。它将列表视为完全二叉树,并使用堆数据结构来选择最大或最小元素并将其放在正确的位置上。 ```python def heapify(arr, n, i): largest = i left = 2 * i + 1 right = 2 * i + 2 if left < n and arr[i] < arr[left]: largest = left if right < n and arr[largest] < arr[right]: largest = right if largest != i: arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) def heap_sort(arr): n = len(arr) for i in range(n // 2 - 1, -1, -1): heapify(arr, n, i) for i in range(n - 1, 0, -1): arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) return arr ``` 7. 计数排序(Counting Sort): 计数排序是一种稳定的整数排序算法,它使用额外的计数数组来确定每个元素在排序后的位置。它适用于元素范围较小的情况。 ```python def counting_sort(arr): max_val = max(arr) count = [0] * (max_val + 1) for num in arr: count[num] += 1 sorted_arr = [] for i in range(len(count)): sorted_arr.extend([i] * count[i]) return sorted_arr ``` 8. 桶排序(Bucket Sort): 桶排序是一种将元素分配到

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值