CUDA & cuDNN
CUDA & cuDNN
CUDA(Compute Unified Device Architecture)和 cuDNN(CUDA Deep Neural Network Library)是 NVIDIA 推出的关键软件工具,用于加速 GPU 上的并行计算和深度学习任务。它们的版本发展也推动了高性能计算和深度学习的发展。以下是 CUDA 和 cuDNN 的主要版本发布历程及其关键特性:
1. CUDA 发展历程
CUDA 是 NVIDIA 于 2006 年发布的一套并行计算平台和编程模型,允许开发者在 NVIDIA GPU 上加速应用程序计算。
-
CUDA 1.0 (2007年6月)
CUDA 的首个版本,提供了基本的并行编程模型和 API,支持 GPU 上的通用计算。此时的 CUDA 只支持简单的计算任务,如矩阵运算。 -
CUDA 2.0 (2008年8月)
增加了对双精度浮点运算的支持,以及cudaMemcpyAsync()
功能,提升了 CPU-GPU 数据传输的性能。提供了cuFFT
和cuBLAS
库。 -
CUDA 3.0 (2010年3月)
引入了 Fermi 架构,支持 ECC 内存和更多的并行线程。提供Thrust
库,使得 C++ STL 风格的并行算法变得更加容易。 -
CUDA 4.0 (2011