- 博客(450)
- 收藏
- 关注
原创 全面解析 classification_report:评估分类模型性能的利器
还会计算加权平均(weighted avg)、宏平均(macro avg)和微平均(micro avg),从而全面评估模型的整体表现。在机器学习中,分类任务是最常见的应用场景之一。无论是垃圾邮件过滤、图像识别还是情感分析,分类模型的性能评估都是至关重要的一步。为了更好地展示分类报告的结果,可以结合 Matplotlib 或 Seaborn 绘制条形图或热力图。是 Scikit-learn 提供的一个强大工具,用于快速生成分类模型的性能报告。如果希望将分类报告的结果用于后续分析或可视化,可以设置。
2025-04-23 22:17:10
764
原创 TensorBoard如何在同一图表中绘制多个线条
可以在启动 TensorBoard 时指定日志目录的父目录,TensorBoard 会自动加载所有子目录中的日志文件,并将每个子目录视为一个独立的运行。可以为每次运行指定一个独立的日志目录,TensorBoard 会自动将这些目录中的数据加载并显示为不同的运行。虽然标签主要用于区分同一运行中的不同数据(例如不同的指标),但也可以通过在标签中添加前缀或后缀来区分不同运行的数据。文件,其中包含运行的描述信息。TensorBoard 会读取这些描述信息,并在运行选择器中显示,帮助快速区分不同的运行。
2025-04-22 00:03:04
461
原创 空间注意力和通道注意力的区别
对特征图的每个通道分配不同的权重,强调“哪些通道更重要”。例如,在RGB图像中,可能红色通道对识别苹果更重要,而绿色通道对识别树叶更重要。对特征图的每个空间位置(即像素点)分配权重,强调“哪些区域更重要”。例如,在目标检测中,模型会更关注目标所在的区域而非背景。
2025-04-21 23:58:09
295
原创 Github十大最佳RAG框架推荐
• 特点: 模块化架构,支持Elasticsearch/FAISS/SQL等存储后端,集成BERT/RoBERTa等模型,适合端到端问答系统开发。• 特点: 多功能AI平台,支持语义搜索、多语言处理及自定义工作流,适合一体化AI解决方案。• 特点: 提供可视化工作流设计,预配置管道,支持主流向量数据库,简化RAG开发流程。• 特点: 端到端开发平台,内置监控和MLOps支持,适合企业级应用。• 特点: 多阶段检索优化,支持混合搜索和知识图谱,适合复杂检索场景。
2025-04-20 18:08:18
267
原创 RAGFlow在Docker中运行Ollama直接运行于主机的基础URL的地址
【代码】RAGFlow在Docker中运行Ollama直接运行于主机的URL的地址。
2025-04-19 20:56:52
278
原创 git 提交标签
一个提交只做一件事(如仅实现一个功能或修复一个 Bug)。提交消息格式:<type>: <description>:生成 CHANGELOG、触发版本号升级(如。:通过标签快速定位历史变更目的。:团队需统一标签命名(如用。
2025-04-13 15:42:24
411
原创 自注意力机制q、k、v计算代码及其应用案例
通过线性变换生成Q/K/V,计算注意力权重后加权聚合Value。适用于需要捕捉局部依赖关系的场景。:将输入拆分为多个头的子空间并行计算,增强模型捕捉多样化特征的能力。:适用于股票价格预测、设备故障检测等时序数据分析任务。
2025-04-08 17:21:46
232
原创 Python实现一个简单的MCP
• 在Cursor聊天框输入:“我的桌面上有哪些文件?• 推荐Python 3.10+(最低3.8)• 观察MCP工具调用过程,需手动授权首次访问。:创建可查询桌面文件列表的MCP服务。• 限制资源密集型操作的执行时间。应返回1.5.0+版本。
2025-04-08 09:20:10
1228
原创 在深度学习中,如何统计模型的 FLOPs(浮点运算次数) 和 参数量(Params)
• 示例:输入尺寸为224×224,卷积核3×3,输出通道64,则单样本FLOPs为3×3²×64×224×224×2≈5.2×10⁹。• FLOPs(复数)指总浮点运算次数,用于模型复杂度;FLOPS(全大写)指每秒浮点运算次数,衡量硬件性能。• 示例:输入通道为3,输出通道为64,卷积核3×3,则参数量为64×(3×3²)+64=1,792。• FLOPs仅反映理论计算量,实际速度还受内存带宽、并行优化等因素影响。• 某些自定义层(如注意力机制)可能未被统计,需手动补充。• 无参数,参数量为0。
2025-04-07 21:37:10
617
原创 为什么有的深度学习训练,有训练集、验证集、测试集3个划分,有的只是划分训练集和测试集?
最终,测试集应被视为“不可见数据”,仅在模型完全确定后使用一次,以反映真实泛化能力。
2025-04-04 22:32:29
430
原创 React: hook相当于函数吗?
自定义 Hook 的本质是将一组逻辑封装为一个可复用的单元,但它仍然是基于 React 内置 Hook 构建的。
2025-04-04 22:10:54
805
原创 AI三大主义 和 深度学习三大主义
在人工智能(AI)研究领域,"三大主义"通常指三种核心方法论或思想流派,它们代表了不同的技术路径和哲学观点。(Three Dogmas of Deep Learning)是YannLeCun在2019年提出的概念,用于概括当前深度学习研究中的核心假设或局限性。
2025-03-29 00:23:30
938
原创 Git 工作流防止git pull导致远程代码覆盖本地修改
开始│├─ 有本地修改?→ git commit 或 git stash│├─ 安全拉取 → git pull --rebase│ ├─ 冲突?→ 解决后 git rebase --continue│ └─ 无冲突 → 完成│└─ 已被覆盖?→ 通过 reflog 或 stash 恢复。
2025-03-29 00:19:23
387
原创 在线运行Python代码输出结果
• 特点:基于Jupyter Notebook的云端环境,支持GPU/TPU加速,适合机器学习和数据分析。• 特点:支持多语言协作、实时共享代码、项目管理,适合团队协作或教学场景。• 特点:主要用于前端开发,但也支持Python,适合轻量级代码演示。• 特点:支持调试功能(设置断点、逐行执行),界面简洁。• 适用场景:快速测试代码、协作开发。• 适用场景:教学、新手理解代码逻辑。• 适用场景:教学、轻量级代码演示。• 适用场景:教学、轻量级脚本编写。• 适用场景:数据分析、教学。
2025-03-19 12:55:29
290
原创 gdal-linux-whl文件安装下载地址
网址:https://sourceforge.net/projects/gdal-wheels-for-linux/files/
2025-03-15 20:09:22
325
原创 免费的人工智能编程教育学习平台
由麻省理工学院(MIT)与谷歌联合开发,专为5-18岁儿童和青少年设计,涵盖从基础知识到跨学科应用的完整课程体系。课程按年龄分为小学、初中和高中三个阶段,内容科学严谨且完全免费。提供全球顶尖AI课程,包括吴恩达的《AI For Everyone》和《机器学习》课程,适合零基础学习者。部分课程免费,证书需付费。由芬兰官方推出的免费AI通识课,涵盖AI基础和应用开发,无需编程基础。由李沐团队编写,结合Python与MXNet框架,提供理论、代码和实战结合的深度学习入门教程。
2025-03-14 13:17:54
1187
原创 深入了解 Unsloth:大模型微调利器
Unsloth 是一款专为高效微调和训练大语言模型而精心打造的开源框架,它的诞生旨在全方位攻克模型微调过程中遇到的种种瓶颈,无论是对追求极致效率的专业 AI 开发者,还是渴望尝试模型定制的爱好者,Unsloth 都展现出了极高的价值,致力于让模型微调变得轻松、快捷且高效。
2025-03-14 10:35:35
992
原创 长文本、知识库、微调对比
对比维度长文本处理知识库微调核心目标理解和生成长篇内容提供背景知识,增强回答能力优化模型在特定任务或领域的表现优点连贯性强,适合复杂任务灵活性高,可随时更新性能提升,定制化强缺点资源消耗大,上下文限制依赖检索,实时性要求高需要标注数据,硬件要求高适用场景写作助手、阅读理解智能客服、问答系统专业领域、特定任务、风格定制额外数据不需要,但可能需要优化上下文长度需要知识库数据需要特定领域的标注数据重新训练不需要,但可能需要优化模型不需要需要。
2025-03-14 10:20:42
654
原创 预训练微调类型分类
微调是在预训练模型基础上,针对特定任务或领域进行优化。:通过大规模数据训练模型,学习通用表示能力。• 多模态预训练(如CLIP、DALL·E):优化文本分类任务(如情感分析、主题分类)。:适配多模态任务(如图文生成、视觉问答)。:优化文本相关任务(如文本生成、分类)。:将模型适配到特定领域(如医疗、法律)。• 知识蒸馏:将大模型知识迁移到小模型。• 增量学习:逐步适配新任务或数据。• 掩码语言模型(如BERT):针对特定需求或场景进行优化。:使用标注数据优化特定任务。:通过奖励机制优化模型输出。
2025-03-14 09:59:10
345
原创 拿破仑希尔《思考致富》提到的领导失败的10大因素
害怕下属可能会取代自己的领导者,早晚会让恐惧成为现实。能干的领导者会培养接班人,并乐意将职位的细节托付给他人。:有能力的领导者会以鼓励而非威慑来领导下属。:能干的领导者不需头衔就可以赢得下属的尊敬。:真正伟大的领导者会视情况需要,自愿从事他要求下属做的任何事情。:因为下属的工作而邀功、自揽光环的领导者必定招致怨恨。真正伟大的领导者乐于将荣耀归于下属。真正的领导者不会因为“太忙”而无法完成分内工作。:下属不会尊重一个放纵无度的领导者。:没有想象力,领导者就无法应付紧急状况,也无法制定有效领导下属的计划。
2025-03-14 09:48:01
197
原创 探秘智能体通信协议 MCP:多智能体协作的 “隐形桥梁”
智能体通信协议 MCP 作为多智能体系统协同工作的核心支撑,正深刻地改变着我们的生活和工作方式。它以其强大的功能、显著的优势和广泛的应用场景,为人工智能技术的落地应用注入了强大动力。随着技术的不断发展和完善,MCP 必将在未来的智能世界中发挥更加重要的作用,引领我们走向一个更加智能、高效、协同的时代。让我们拭目以待,共同见证 MCP 创造的无限可能!
2025-03-14 09:25:45
1099
原创 《思考致富》- 阻碍成功的31个要素
拿破仑·希尔在《思考致富》中详细总结了阻碍成功实现的31个要素,这些要素涵盖了个人思维、行为习惯以及外部环境等多个方面。
2025-03-13 14:01:30
322
原创 AI数据相关处理与交易领域的头部公司全景分析
在人工智能与大模型技术快速发展的背景下,数据作为核心生产要素的重要性愈发凸显。数据处理与交易领域已形成从底层标注到上层应用的全产业链生态。企业需在技术能力、合规框架与行业场景深度结合中构建壁垒,方能在万亿级数据经济中占据先机。
2025-03-10 17:39:56
838
原创 pytorch常用参数初始化
修正ReLU族的负区间影响,适用于ReLU/LeakyReLU。:保持输入输出方差一致,适用于tanh/sigmoid激活。:保持输入输出空间的正交性,适用于RNN/LSTM。:权重矩阵满足 ( W^T W = I ):限制采样范围在±2std内,避免极端值。:权重初始化为0(不推荐用于隐藏层):导致所有神经元对称更新,失去多样性。:随机将部分权重设为0,打破对称性。:将最后一个BN层的权重初始化为0。Kaiming初始化。
2025-03-08 12:49:38
872
原创 `mocker.patch` 和 `fixture`模拟方法的选择和区别
适合临时替换某个函数或对象的行为,灵活性高,但可能导致代码重复。• fixture:适合在多个测试中复用相同的模拟对象或逻辑,集中管理,但灵活性较低。• 根据具体需求选择合适的方法,或者结合使用两者以实现更好的测试效果。
2025-03-07 21:21:58
314
原创 结合unittest和pytest进行虚拟数据库测试
使用pytest和MagicMock模拟数据库操作,并测试假设的函数,将用户添加到数据库中。
2025-03-07 11:24:12
583
原创 ImportError: DLL load failed while importing _gdal: 找不到指定的模块。
通过设置环境变量或手动添加 DLL 目录到搜索路径,可以解决问题,并成功导入osgeo.gdal模块。
2025-03-04 14:32:50
835
原创 观察评测模型的性能时为什么需要关闭dropout及dropout一般设置
是一种广泛使用的正则化技术,用于防止神经网络过拟合。它的核心思想是在训练过程中随机“丢弃”一部分神经元,从而减少神经元之间的共适应性,增强模型的泛化能力。
2025-02-27 21:21:50
1090
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人