自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(793)
  • 收藏
  • 关注

原创 0-1背包与完全背包:遍历顺序背后的秘密

0-1背包倒序:防止同一物品被多次使用,保证状态转移基于上一轮结果完全背包正序:允许同一物品被多次使用,状态转移基于本轮已更新结果本质区别:状态依赖的对象不同,导致遍历顺序的差异遍历顺序决定了当前物品能否被重复使用。理解了这一点,你就不再需要死记硬背,而是能够根据问题的约束条件自然推导出正确的遍历顺序。

2026-02-20 16:55:56 402

原创 【算法精讲】动态规划(DP)初始化指南

在 DP 中,我们通过不断比较和更新dp[i]来逼近最优解。预设的初始值,必须充当“透明人”的角色,不能干扰第一次状态转移的计算。如果是比武招亲(求最大值),擂台上如果先站了一个泰森(极大值),后面的人怎么赢?所以擂台上初始应该没人(负无穷)。如果是寻找洼地(求最小值),坑里如果已经填满了土(0),你怎么找更深的地方?所以坑里初始应该是无限深(正无穷)。求解目标推荐初始值 (Default)逻辑依据Base Case (通常)求最小 (Min)正无穷 (+Inf)确保第一次min能更新。

2026-02-18 19:34:56 434

原创 大模型评估排行榜全景指南

随着大语言模型(LLM)应用走向成熟,研究者、开发者、创业者都迫切需要客观、透明的来衡量模型实力。不同榜单聚焦通用能力、语言理解、对话质量、中文能力等维度——本篇整理最实用、可访问的排行资源并逐个附上链接。

2026-02-18 17:55:59 806

原创 区间 DP 的两种遍历方式详解:从“左端点倒序”到“按长度递增”

区间 DP 的核心不是“怎么循环”,而是:如何保证在计算rec[i][j]时,它依赖的所有子区间都已经计算完毕。按区间长度从小到大按左端点从右往左记住这条铁律,区间 DP 就彻底通透了。

2026-02-17 16:05:51 885

原创 主流前端「语言/技术 → 主流框架 → 组件库生态 → 适用场景」解析

技术适合场景组件生态成熟度企业使用率React中大型项目⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐Vue中小型/国内⭐⭐⭐⭐⭐⭐⭐⭐⭐Angular超大型⭐⭐⭐⭐⭐⭐⭐Svelte轻量项目⭐⭐⭐⭐原生 + Tailwind设计驱动⭐⭐⭐⭐⭐⭐。

2026-02-16 17:33:04 952

原创 AI时代:为什么越来越多技术创业者转向OPC模式?

过去二十年,技术创业几乎默认等于“融资”。但在大模型与云基础设施高度成熟的今天,越来越多开发者选择另一条路径——。这不是“做小”,而是。

2026-02-14 15:34:44 464

原创 VC创业 vs OPC创业:两种创业范式的底层逻辑与技术路径

在AI时代,技术门槛降低,算力民主化,很多项目已经不必依赖风险投资。做一个十亿美元估值公司或做一个年利润百万的个人公司两者没有高低,只有匹配与否。

2026-02-14 15:29:19 774

原创 魔搭平台AI免费资源list

https://www.modelscope.cn/learn/1409

2026-02-07 14:15:05 162

原创 学术论文写作全流程工具指南 (2026版)

学术论文的撰写是一个系统工程,涵盖了从最初的选题调研到最终的投稿发表。为了提高效率,选择合适的工具组合至关重要。本指南将论文写作分为六个核心阶段,并为每个阶段推荐了主流及新兴的工具。

2026-02-06 11:23:21 367

原创 vLLM vs Ollama:大模型本地与生产部署如何选型?一文讲透

场景选型本地体验Ollama原型开发Ollama生产部署vLLM高并发服务vLLM企业级应用vLLM一句话结论:Ollama 解决“能不能快速跑起来”vLLM 解决“能不能稳定高效跑下去”

2026-02-05 01:27:55 246

原创 Transformer前后应用KV Cache代码对比

https://github.com/rasbt/LLMs-from-scratch/blob/main/ch04/03_kv-cache/gpt_ch04.pyhttps://github.com/rasbt/LLMs-from-scratch/blob/main/ch04/03_kv-cache/gpt_with_kv_cache.py

2026-02-05 00:43:03 129

原创 真正读懂 OpenClaw 设计思想和实现机制文章推荐

完整运行时架构、消息流转、Agent 执行循环、工具调度机制。3. Memory 实现策略(turn0search11)4. 官方 Memory 文档(turn0search2):想读懂 Agent Runtime 和执行逻辑的人。:Agent 工程化难点、长期任务可靠性。:Memory 索引机制 + 实现细节。:想读源码 + 理解系统结构的工程师。:Memory / RAG 机制实现。:源码级架构拆解,分层设计分析。:设计理念、系统演进路线。我可以直接给你定制一条。

2026-02-04 10:10:20 603

原创 Ollama 远程访问完整实战:One-API + 内网穿透 + Cloudflare Tunnel 全方案解析

Ollama 是否支持远程调用 →支持是否可以直接内网穿透 →完全可行是否需要 One-API →看规模。

2026-01-29 18:24:44 1001

原创 多大模型 API 统一调用解决方案:6 个 GitHub 开源项目深度推荐

AI SaaS 产品企业 AI 中台多模型聚合 API私有化 ChatGPT那么这三套组合,基本可以覆盖90% 真实业务需求。

2026-01-29 17:54:18 657

原创 PromptHub CLI - Git风格版本控制系统实现方案

PromptHub CLI是一个为AI提示设计的版本控制系统,借鉴了Git的核心思想和设计模式。该项目实现了类似Git的版本控制功能,包括分支管理、版本历史追踪、差异比较、谱系管理等,专门针对AI提示的特性和需求进行了优化。# 配置REST API prompthub remote rest --url https://api.example.com # 环境变量 REST_API_URL = https://api.example.com REST_API_KEY = your-api-key。

2026-01-29 10:01:52 553

原创 深入解析:如何通过字段设计实现Git级别的版本控制

内容寻址:通过哈希值唯一标识内容版本历史:通过parent字段构建历史链分支管理:支持多分支并行开发不可变性:非叶子节点内容不可变时间追踪:记录创建和更新时间id字段:提供唯一标识和引用追踪parentId字段:构建版本历史和分支管理contentHash字段:实现内容寻址和重复检测content字段:存储提示词内容createdAt/updatedAt字段:追踪时间线name/score/notes字段:扩展版本管理功能。

2026-01-29 09:36:52 553

原创 深度解析 PromptHub CLI 的 Git 双层溯源体系:让提示词版本追溯既见「文件」也见「业务」

复用成熟底座:不重复造轮子,用 Git 解决通用的版本控制问题;补充业务语义:通过结构化文件为通用工具赋予「场景化理解能力」;自动化联动:屏蔽两层的协调成本,让用户只需关注业务目标,无需手动管理底层操作;兼顾可读性与工程性:业务层面向人,Git 层面向机器/团队,两者缺一不可。最好的版本管理不是设计全新的体系,而是将成熟的工程化工具与业务场景深度融合,让工具「懂代码」也「懂业务」。

2026-01-28 17:34:25 412

原创 从 Prompt 混乱到工程化:GitHub 上那些值得关注的提示词生成与管理项目

目标推荐方向自动优化 Prompt非技术用户生成 PromptYPrompt团队 Prompt 管理本地 Prompt 库学习与参考工程化 / CLI产品效果用户体验成本与稳定性它就不再只是“输入框里的几句话”,而是一种需要被设计、管理和持续优化的工程资产。好消息是,开源社区已经给了我们足够多的工具和思路。你不必一次性全上,但从「整理 Prompt」开始,就是迈向 Prompt 工程化的第一步。

2026-01-28 17:11:51 300

原创 从零散文本到工程化资产:PromptHub CLI 重构提示词管理范式

PromptHub CLI 证明了一个核心观点:AI原生应用的研发,需要适配AI场景的工程化工具链。提示词作为AI应用的「核心代码」,理当享受与代码同等的版本管控、量化评估、团队协作能力。这套工具的设计思路,也为AI工程化领域提供了参考:将成熟的软件工程理念与AI场景深度结合,而非从零构建新体系——这既是最高效的创新路径,也是最能被开发者接受的落地方式。

2026-01-28 16:47:36 546

原创 从0到1实现AI提示词优化工具:核心逻辑与技术落地

明确AI的角色定位(如“专业的产品经理”“严谨的技术文档工程师”);固化可复用规则(如输出格式、语气要求、质检标准);减少AI幻觉(明确“能/不能回答的内容”“参考的信息范围”);适用场景:角色扮演、流程化任务(客服话术、审稿规则)、长文档规范。AI提示词优化工具的核心是“Prompt for Prompt”——用结构化的优化模板驱动AI重构原始提示词,通过“预设规则→AI优化→迭代打磨”的闭环实现提示词的持续优化。轻量化场景:选择纯前端方案,基于浏览器本地存储实现,隐私优先、部署便捷;

2026-01-28 16:20:56 370

原创 开源分类页前端架构设计方案

基于网页内容(开源文章分类展示、列表化呈现、日期排序等核心功能),结合个人技术博客的常见架构选型,以下是该网页的前端架构设计方案拆解,聚焦。

2026-01-28 15:12:07 208

原创 OpenManus沙箱实现解析:从Docker容器到轻量替代方案

OpenManus基于Docker容器的沙箱实现,是强隔离、高可控沙箱的标杆,通过Docker SDK for Python的深度封装,实现了容器全生命周期管理与业务层的无缝对接,适合生产环境的高危操作场景。但沙箱的核心本质是隔离性与实现成本的平衡,在本地开发、轻量生产等场景下,无需追求极致的隔离性,轻量方案反而能带来更高的性能和更低的部署成本。本文提出的三种轻量替代方案,从零依赖的进程隔离到兼容Docker API的Podman容器。

2026-01-28 13:50:31 708

原创 GitHub上开源免费的公众号排版相关工具

新手首选(在线版零门槛),技术博主首选md2wechat(Markdown适配);所有工具均开源免费,可本地部署、自定义修改,无付费限制;辅助工具中,解决样式兼容,wechat-svg实现交互排版,可搭配核心工具使用。

2026-01-28 10:46:41 707

原创 适用于飞书表格信息抽取的伪代码元构建提示词

【代码】适用于飞书表格信息抽取的伪代码元构建提示词。

2026-01-28 09:44:00 36

原创 Dify 应用用户隔离与会话管理技术方案

字段名来源作用管理策略user业务后端生成用户隔离的唯一凭证。Dify 依此区分上下文归属。强制覆盖。由后端根据 Token 解析出的用户 ID 映射生成,禁止前端直接传递此参数。Dify 返回会话隔离凭证。区分同一个用户下的不同聊天窗口。前端维护。前端存储在本地,发起请求时透传给后端,后端透传给 Dify。

2026-01-26 23:01:29 598

原创 实战 BGE-M3 与 Ollama:从接口测试到向量原理解析

使用curl或 Python 确认 Ollama 端口连通性。明确 Ollama 接口返回的是 1024 维的稠密向量。理解 BGE-M3 的三维能力,并在需要时通过引入 Reranker 模型来构建更强大的混合检索系统。

2026-01-26 17:48:32 646

原创 从 Gunicorn 到 FastAPI:Python Web 生产环境架构演进与实战指南

从 Gunicorn 的 Master-Worker 架构到 FastAPI 的 ASGI 异步模型,Python Web 生态正在经历从**“多进程应对并发"到"协程处理高并发”**的演进。关键建议不要直接用框架的开发服务器生产运行,始终使用 Gunicorn/Uvicorn评估应用类型:I/O 密集型优先考虑 FastAPI,传统 MVC 应用 Flask 依然优秀监控与调优:根据实际负载调整 Worker 数量,关注内存使用和响应时间。

2026-01-25 06:51:25 663

原创 构建基于 JSON 模板的可插拔通用LLM信息提取系统

通过将业务逻辑封装在JSON 插槽模板中,我们实现了一个高度灵活的信息提取系统。它不仅能让业务专家(而非 AI 工程师)直接定义审核规则,还能通过标准化的 Schema 确保数据的稳定性。

2026-01-23 16:04:50 534

原创 精选标准参考合同案例网站汇总

高质量的合同资源是法律科技开发与学术研究的核心基石,不同场景需结合资源权威性、细分度、语言类型选择适配平台。官方资源保障合规底线,专业平台补充场景深度,国际资源适配跨境需求,案例资源支撑司法实践分析。建议根据具体开发/研究目标,构建多源资源组合库,并注重语料合规性与动态更新,提升工具或研究成果的可靠性与实用性。

2026-01-21 13:58:51 347

原创 提示词研究必藏:从学术到工程的高质量项目全指南

提示词工程的核心价值在于最大化LLM的能力边界,而高质量的项目的是探索这一领域的重要阶梯。无论是学术研究中的算法创新,还是工程落地中的效率提升,上述项目都能提供关键支撑。建议读者根据自身需求选择合适的项目组合,在实践中积累经验,同时关注领域顶会与开源社区的最新动态,持续跟进技术迭代。如果有特定的研究方向或业务场景,欢迎交流探讨,进一步优化项目选型与实践方案。

2026-01-21 13:27:11 576

原创 突破从 0 到 1:AI Agent 的冷启动全攻略

在启动之前,你必须明确 Agent 的边界。一个试图解决所有问题的 Agent 往往在冷启动阶段就会崩溃。不要先做一个“通用助理”,而是做一个“自动化报销助手”或“SQL 查询生成器”。为 Agent 配备最基础、最可靠的外部工具 API。AI Agent 的冷启动不是一个技术点,而是一个系统工程。它依赖于高质量的初始数据(RAG)清晰的逻辑引导(CoT)以及严谨的人类监督(HITL)。

2026-01-21 10:56:49 535

原创 IEEE Transactions on Geoscience and Remote Sensing (TGRS)

投稿指南与作者信息。

2026-01-19 18:44:36 1028 1

原创 【算法题】如何判断是否使用动态规划(DP)

动态规划不是万能的,它只适合特定类型的问题。我们可以通过和来快速识别,结合例子会更直观。

2026-01-19 12:16:35 673

原创 告别 Axios?轻量级 HTTP 客户端 ky 深度解析

ky是由开源大神 Sindre Sorhus(Got、Chalk 等知名库的作者)基于浏览器原生 Fetch 封装的一个极小(压缩后约 2KB)的 HTTP 客户端。(微小而优雅)。场景ky参数项优势基础路径prefixUrl避免重复写完整 API 地址发送数据json自动序列化并设置 Header查询参数自动处理对象转 URL 字符串重试控制retry内置退避算法,增强网络容错性认证信息hooks适合在中统一注入 Token。

2026-01-19 07:06:42 697

原创 深度对比:Prompt Tuning、P-tuning 与 Prefix Tuning 有何不同?

在讨论区别前,必须明确一个共性:这三者都属于Soft Prompt(软提示)。:是你手动写的文字(如“翻译这段话:”),模型看得懂,但不可训练。:是几串“数学向量”。人类看不懂这些乱码,但它们可以随着训练而改变,效果往往比手动写的文字更好。如果在玩千亿参数的大模型直接用。因为它简单,且在大规模参数下,简单的 Prefix 拼接就能达到很好的效果。如果处理的是特定的自然语言理解任务(如 NER、情感分析)是个好选择,它利用模板的思想能更好地激发模型的潜在知识。

2026-01-18 10:26:57 622

原创 大模型的MCP和function calling的使用方式有什么区别

✅ 优点简单、可控易调试非常适合单体应用 / API 网关❌ 局限强耦合函数 schema 写死在 prompt / 请求里无发现能力模型只能用你“提前告诉它的函数”不适合跨进程、跨语言、跨服务。

2026-01-16 15:23:36 565

原创 针对大语言模型文本审核逻辑鲁棒性与精细化规则编排的深度研究报告

在大语言模型(LLM)的快速演进中,文本审核作为确保人工智能系统安全与合规的关键技术,正面临着从简单的模式识别向复杂逻辑推演的范式转移。传统的审核系统通常依赖于关键词过滤或浅层的统计分类器,但在处理具有深层语境、多步逻辑谬误或极其精细的业务规则时,这些方法表现出了显著的局限性。随着企业对内容合规性的要求日益严苛,大语言模型虽然具备强大的语义理解能力,却在处理复杂的逻辑一致性、规则冲突解决以及精细化规则的实时动态调整方面存在脆弱性 1。本报告旨在探讨提升大模型文本审核逻辑能力的技术路径,分析如何通过神经符号系

2026-01-16 10:26:22 626

原创 APITemplate.io是什么

是一个强大的自动化文档与图片生成平台,旨在帮助开发者和企业通过 API 快速生成 PDF 文档、社交媒体图片(如 Instagram 帖子、OG 图片)以及各类横幅。无需编写复杂的 HTML/CSS 渲染代码或处理 PDF 引擎的配置,即可实现视觉内容的大规模自动化生产。

2026-01-14 22:04:43 288

原创 如何判断什么时候需要使用RAG

第 1 层:LLM 判断是否需要检索(Router)第 2 层:检索后评估文档是否有用第 3 层:生成后自检,不确定则二次检索。

2026-01-14 06:45:40 281

原创 为什么要用 `Generic` 和 `TypeVar`?——Python 泛型的真实价值

使用在不牺牲通用性的前提下,保住类型信息。运行时才会出现的错误提前到写代码阶段解决这就是 Python 泛型真正的价值。

2026-01-12 15:29:04 287

gdal-win-py39.whl

gdal-win-py39.whl

2025-03-28

自解压制作软件,结合winrar打包程序

自解压制作软件,结合winrar打包程序

2024-09-23

7zsfx快捷打包自解压

7zsfx快捷打包自解压

2024-09-23

7z SFX Builder

7z SFX Builder 实现文件自解压

2024-09-23

能够实现多文件打包程序软件

能够将软件包打包成为一个exe启动文件

2024-09-23

2024阿里巴巴全球数学竞赛题目

2024阿里巴巴全球数学竞赛题目

2024-06-15

2022年数学建模国赛C题题目

国赛赛题

2023-02-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除