倍增求LCA
LCA是什么
LCA(Least Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。
———来自百度百科
在这棵树上,7和5节点的最近公共祖先就是 3。
如何求LCA
那么如何求呢?详细的思考路径可以参考洛谷。这里只说下方法:
这里还需要引入: f(i,j) 表示 节点i 的第 2^j 老的祖先是哪个节点。
这里举个例子:f(17,0) = 14 (也就是17的父亲节点) f(17,1) = 10
步骤如下:
求两个点A,B的LCA
- 先让A B 移动到深度相同的位置
- 然后按照 2^i 的方式从下往上跳。其中 i 是从 大到小的。 具体的解释见洛谷
- 然后知道找到他们的 父节点是同一个。 说明已经找到了 LCA
倍增的含义就是:
从大到小的向上移动。指数级的向上试探。如果成功就固化下来。类似像:
求127的二进制表达: 我们会去试 128 行不行。 64可以。 127 -64 =63 。那么 32可以。 63 -32=31。
31的话16可以。 15…
同样的求A,B两个同一层的节点时,那么如果他们深度都是距离LCA 127步。那么如何能够找到这个LCA。思路是一毛一样的。
最后的例子:
以17和18为例。找到LCA
圆圈标注的是顺序:
- 先让17和18 移动到深度相同的位置
- 然后按照 2^i 的方式从下往上跳。其中 i 是从 大到小的。 具体的解释见洛谷
- 然后知道找到他们的 父节点是同一个。 说明已经找到了 LCA
练手题
//
// Created by majoe on 2020/7/9.
//
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5+10;
int h[N*2],e[N*2],ne[N*2],idx;
int n,m,s;
int lg[N];//求log2n向下取整的打表
int fa[N][22];//数组fa(i,j)表示,节点i的第2^j个祖先节点的号码
int deep[N];//记录每个节点的深度。打表
int quest[N][2];//询问数组
void add(int a ,int b ){
e[idx] = b; ne[idx] = h[a];h[a] = idx++;
}
//填写上fa数组
void dfs(int now , int fath){//now表示当前节点,fath表示它的父亲节点
fa[now][0] = fath; deep[now] = deep[fath] +1;
for (int i = 1; i <= lg[deep[now]]; ++i) {
//根据递推公式 fa(i,j) = fa(fa(i,j-1),fa(i,j-1))
fa[now][i] = fa[fa[now][i-1]][i-1];
}
for (int i = h[now]; i != -1 ; i = ne[i]) {
int j = e[i]; // now的所指向的节点
if( j != fath) dfs(j,now); //如果所指节点不是父节点,那么遍历子节点
}
}
//求最短公共祖先
int lca(int x, int y){
if(deep[x] < deep[y]) swap(x,y); //保证x的深度是最大的
// x,y争取跳到同一层
while (deep[x] > deep[y]) x = fa[x][lg[deep[x] - deep[y]]];
if(x == y) // 如果其中一个节点是另一个父节点,那么直接返回
return x;
for (int i = lg[deep[x]]; i >=0 ; --i) { // x,y现在在同一层了,那么一起跳
if(fa[x][i] != fa[y][i]) x = fa[x][i],y = fa[y][i]; //一直调到公共祖先下一层
}
return fa[x][0];
}
int main(){
memset(h,-1,sizeof h);
// n个节点,m个询问,s为根节点
cin >> n >> m >> s;
//输入n-1条边
int x,y;
for (int i = 0; i < n - 1; ++i) {
cin >> x >> y;
add(x,y);add(y,x);
}
//给lg打表
lg[0] = -1;
for (int i = 1; i <= n ; ++i) {
lg[i] = lg[i>>1] + 1;
}
dfs(s,0); //填上fa数组
for (int i = 0; i < m; ++i) {
int x,y;
cin >> x >> y;
quest[i][0] = x; quest[i][1] = y;
}
for (int i = 0; i < m; ++i) {
cout << lca(quest[i][0],quest[i][1]) << endl;
}
return 0;
}