Leetcode#5 最长回文子串

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。

示例 2:

输入: "cbbd"
输出: "bb"

一.蛮力法

 遍历该字符串所有子串,该过程时间复杂度为O(n2),判断该字符串是否为回文串,该过程时间复杂度O(n),过程略

class Solution {
public:
    bool isPalindrome(string s){
        int i=0,j=s.length()-1;
        while(i<j)
        {
            if(s[i]!=s[j])
                return false;
            i++;j--;
        }
        return true;
    }
    string longestPalindrome(string s) {
        int max=0;
        string ans;
        for(int i=0;i<s.length();i++)
        {
            int t=i;
            while(t<s.length())
            {
                if(s[i]==s[t]&&(t-i+1)>max)
                   {
                    string str(s,i,t-i+1);
                    if(isPalindrome(str))
                    {
                        ans=str;
                        max=t-i+1;
                    }
                   }
                t++;
            }
        }
        return ans; 
    }
};

二.动态规划

为了改进暴力法,我们首先观察如何避免在验证回文时进行不必要的重复计算。考虑 “ababa”\textrm{“ababa”}“ababa” 这个示例。如果我们已经知道 “bab”\textrm{“bab”}“bab” 是回文,那么很明显,“ababa”\textrm{“ababa”}“ababa” 一定是回文,因为它的左首字母和右尾字母是相同的。

我们给出 P(i,j)P(i,j)P(i,j) 的定义如下:

P(i,j)={true,如果子串Si…Sj是回文子串false,其它情况 P(i,j) = \begin{cases} \text{true,} &\quad\text{如果子串} S_i \dots S_j \text{是回文子串}\\ \text{false,} &\quad\text{其它情况} \end{cases} P(i,j)={true,false,​如果子串Si​…Sj​是回文子串其它情况​

因此,

P(i,j)=(P(i+1,j−1) and (Si==Sj) P(i, j) = ( P(i+1, j-1) \text{ and } S_i == S_j ) P(i,j)=(P(i+1,j−1) and Si​==Sj​)

基本示例如下:

P(i,i)=true P(i, i) = true P(i,i)=true

P(i,i+1)=(Si==Si+1) P(i, i+1) = ( S_i == S_{i+1} ) P(i,i+1)=(Si​==Si+1​)

我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有 2n−12n - 12n−1 个这样的中心。

你可能会问,为什么会是 2n−1个,而不是 n 个中心?原因在于所含字母数为偶数的回文的中心可以处于两字母之间

public String longestPalindrome(String s) {
    if (s == null || s.length() < 1) return "";
    int start = 0, end = 0;
    for (int i = 0; i < s.length(); i++) {
        int len1 = expandAroundCenter(s, i, i);
        int len2 = expandAroundCenter(s, i, i + 1);
        int len = Math.max(len1, len2);
        if (len > end - start) {
            start = i - (len - 1) / 2;
            end = i + len / 2;
        }
    }
    return s.substring(start, end + 1);
}

private int expandAroundCenter(String s, int left, int right) {
    int L = left, R = right;
    while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
        L--;
        R++;
    }
    return R - L - 1;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值