数据结构
韩某Hyman
Program is zero,but zero is start.
展开
-
专门写坑,越改越浪费资源?
Model : 仅当成 Eloquent class。Repository : 辅助 model,处理资料库逻辑,然后注入到 service。Service : 辅助 controller,处理业务逻辑,然后注入到 controller。Controller : 接收 HTTP request,调用其他 service。Presenter : 处理显示逻辑,然后注入到 view。原创 2022-09-24 22:00:00 · 222 阅读 · 0 评论 -
100个点位的坐标系数组,如何按照距离近的均分10组,每组10个坐标点呢?
算法问题原创 2022-10-15 21:11:17 · 366 阅读 · 0 评论 -
B-tree、B+tree详解(四)使用场景
B-tree和B+tree的使用场景文件系统和数据库系统中常用的B/B+ 树,他通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。他广泛用于文件系统及数据库中,如:Windows:HPFS 文件系统Mac:HFS,HFS+ 文件系统Linux:ResiserFS,XFS,Ext3FS,JFS 文件系统数据库:ORACLE,MYSQL,SQLSERVER 等中原创 2019-08-28 20:16:18 · 1148 阅读 · 0 评论 -
B-tree、B+tree详解(三)聚簇索引与非聚簇索引
聚簇索引(Clustered Index)和非聚簇索引(Non- Clustered Index)最通俗的解释是:聚簇索引的顺序就是数据的物理存储顺序,而对非聚簇索引的索引顺序与数据物理排列顺序无关。举例来说,你翻到新华字典的汉字“爬”那一页就是P开头的部分,这就是物理存储顺序(聚簇索引);而不用你到目录,找到汉字“爬”所在的页码,然后根据页码找到这个字(非聚簇索引)。聚簇索引的唯一性正式聚簇索引的顺序就是数据的物理存储顺序,所以一个表最多只能有一个聚簇索引,因为物理存储只能有一个顺序。正因为原创 2019-08-28 10:35:40 · 2939 阅读 · 0 评论 -
B-tree、B+tree详解(二)插入与删除
B-tree关键字插入操作生成从空树开始,逐个插入关键字。但是由于B-树节点关键字必须大于等于[ceil(m/2)-1],(其中ceil(x)是一个取上限的函数)所以每次插入一个关键字;首先在最底层(叶子节点那一层)的某个非终端节点中添加一个“关键字”,该结点的关键字不超过m-1,则插入完成;否则要产生结点的“分裂”,将一半数量的关键字分裂到新的其相邻右结点中,中间关键字上移到父结点中。示例插入以下字符字母到一棵空的B 树中(非根结点关键字数小了(小于2个)就合并,大了(超过4个)就分裂):原创 2019-08-28 06:28:09 · 9555 阅读 · 1 评论 -
B-tree、B+tree详解(一)概念与查找
前言B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引。因为B+树是从最早的平衡二叉树演化而来的。在讲B+树之前必须先了解二叉查找树、平衡二叉树(AVLTree)和平衡多路查找树(B-Tree),B+树即由这些树逐步优化而来。详情请查看上一篇文章(二叉查找树与平衡二叉树)!概念B-tree(多路搜索树,平衡多路查找树,并不是二叉的):是一种常见的数据结构。相对于二叉,B-tree的每个内结点有多个分支,即多叉。B+tree:与B-tree的树结构类似,是在B-原创 2019-08-15 19:50:09 · 3029 阅读 · 0 评论 -
二叉查找树与平衡二叉树
最近在恶补高级数据库方面的知识,发现大学时学的数据结构什么的都忘了,从最基础的二叉树开始吧。概念二叉查找树:又称二叉排序树(Binary Sort Tree)或二叉搜索树(Binary Search Tree)。平衡二叉树:(Balanced Binary Tree)它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。详解二叉查找树二叉树具有以下性质:左子树的键值小于根的键值,右子树的键值大于根的键值。如下图所示就是一棵二叉查找树原创 2019-08-15 15:26:41 · 2129 阅读 · 0 评论