数塔
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 79934 Accepted Submission(s): 45964
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
这是一个动态规划入门题,让我恢复一下大学时候的状态,动态规划最难的地方就在于你怎么把他分解成正确的小问题。
这道题有很多思路,我写的思路是用一个dp数组从下往上计算并纪录每个节点的最大值,这样最上面一个就是整个三角的最大值了,就比如题中给的数组如上,那么它的dp数组就是这样子的
4 5 2 6 5
7 12 10 10
20 13 10
23 21
30
代码如下:
#include <stdio.h>
int data[110][110],dp[110][110]={0},n;
//两数之间最大值
int maxData(int a,int b){
return a>b?a:b;
}
//求dp数组并输出整个三角最大值
int maxSum(){
//初始化dp数组第n行
for(int i=1;i<=n;i++){
dp[n][i]=data[n][i];
}
for(int i=n-1;i>=1;i--){
for(int j=1;j<=i;j++){
//dp[i][j]就是就是下一行下面和侧面的最大值加上对应data值
dp[i][j] = maxData(dp[i+1][j],dp[i+1][j+1])+data[i][j];
}
}
return dp[1][1];
}
int main(void) {
int c,i,j;
scanf("%d",&c);
while(c--){
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=i;j++){
scanf("%d",&data[i][j]);
}
}
printf("%d\n",maxSum());
}
return 0;
}