大数据-Flume(分布式日志收集框架)

这里主要是三个常见的需求:

监听端口收集数据

监听文件收集数据

监听文件数据转向其他机器


Flume安装前置条件

    Java Runtime Environment - Java 1.7 or later
    Memory - Sufficient memory for configurations used by sources, channels or sinks
    Disk Space - Sufficient disk space for configurations used by channels or sinks
    Directory Permissions - Read/Write permissions for directories used by agent




安装jdk
下载
解压到~/app
将java配置系统环境变量中: ~/.bash_profile
export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144
export PATH=$JAVA_HOME/bin:$PATH
source下让其配置生效
检测: java  -version




安装Flume
下载
解压到~/app
将java配置系统环境变量中: ~/.bash_profile
export FLUME_HOME=/home/hadoop/app/apache-flume-1.6.0-cdh5.7.0-bin
export PATH=$FLUME_HOME/bin:$PATH
source下让其配置生效
flume-env.sh的配置:export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144
检测: flume-ng version




example.conf: A single-node Flume configuration

使用Flume的关键就是写配置文件

A) 配置Source
B) 配置Channel
C) 配置Sink
D) 把以上三个组件串起来

需求一:从指定网络端口采集数据输出到控制台

a1: agent名称 
r1: source的名称
k1: sink的名称
c1: channel的名称


# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1


# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop000
a1.sources.r1.port = 44444


# Describe the sink
a1.sinks.k1.type = logger


# Use a channel which buffers events in memory
a1.channels.c1.type = memory


# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动agent
flume-ng agent \
--name a1  \
--conf $FLUME_HOME/conf  \
--conf-file $FLUME_HOME/conf/example.conf \
-Dflume.root.logger=INFO,console


使用telnet进行测试: telnet hadoop000 44444




Event: { headers:{} body: 68 65 6C 6C 6F 0D hello. }
Event是FLume数据传输的基本单元

Event =  可选的header + byte array


需求二:监控一个文件实时采集新增的数据输出到控制台

Agent选型:exec source + memory channel + logger sink
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1


# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/hadoop/data/data.log
a1.sources.r1.shell = /bin/sh -c


# Describe the sink
a1.sinks.k1.type = logger


# Use a channel which buffers events in memory
a1.channels.c1.type = memory


# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1


启动agent
flume-ng agent \
--name a1  \
--conf $FLUME_HOME/conf  \
--conf-file $FLUME_HOME/conf/exec-memory-logger.conf \
-Dflume.root.logger=INFO,console

测试:新创建第二个终端,输入echo hello >> exec-memory-logger.conf ,看第一个终端是否能获取到


注意如果走离线的,就将收集到的数据存入到hdfs,如果走实时的,就将数据存入kafka(要设置sink类型和server)

以上只要修改a1.sinks.k1.type即可




需求三:将A服务器上的日志实时采集到B服务器
技术选型:
exec source + memory channel + avro sink
avro source + memory channel + logger sink

技术原理图:


flume配置:

第一台机器上:

配置文件名:exec-memory-avro.conf



exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel


exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /home/hadoop/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c


exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = hadoop000
exec-memory-avro.sinks.avro-sink.port = 44444


exec-memory-avro.channels.memory-channel.type = memory


exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel





第二台机器:

配置文件名:avro-memory-logger.conf


avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel


avro-memory-logger.sources.avro-source.type = avro
avro-memory-logger.sources.avro-source.bind = hadoop000
avro-memory-logger.sources.avro-source.port = 44444


avro-memory-logger.sinks.logger-sink.type = logger


avro-memory-logger.channels.memory-channel.type = memory


avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel






先启动avro-memory-logger
flume-ng agent \
--name avro-memory-logger  \
--conf $FLUME_HOME/conf  \
--conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console




flume-ng agent \
--name exec-memory-avro  \
--conf $FLUME_HOME/conf  \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \

-Dflume.root.logger=INFO,console


需求三的实现流程:

1)机器上A上监控呢一个文件,当我们访问主站时会有用户行为日志记录到access.log中

2)avro sink把新产生的日志输出到对应的avro source指定的hostname和port上

3)通过avro source对应的agent将我们的日志输出到控制台(kafka)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值