链接:http://gdutcode.sinaapp.com/contest.php?cid=1057
Problem E: 倒水(Water)
一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水。接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子。每次他选择两个当前含水量相同的瓶子,把一个瓶子的水全部倒进另一个里,然后把空瓶丢弃。(不能丢弃有水的瓶子)
显然在某些情况下CC无法达到目标,比如N=3,K=1。此时CC会重新买一些新的瓶子(新瓶子容量无限,开始时有1升水),以到达目标。
现在CC想知道,最少需要买多少新瓶子才能达到目标呢?
Input
第一行一个整数T,表示有T组数据。
接着T行,每行两个正整数, N,K(1<=N<=10^9,K<=1000)。
Output
一个非负整数,表示最少需要买多少新瓶子。
Sample Input
3
3 1
13 2
1000000 5
Sample Output
1
3
15808
解题思路:
当给出的 k 大于实际的能够合并的最少的瓶子数时,不需要再添加瓶子
当 k 等于1 的时候,合并的瓶子数是2的幂
当 k 小于实际能够合并的最少的瓶子数时,每次都是减去不大于n的最大2的幂。因为每2的幂能合并的最少都是1。
大神思路:
(1) 当k == 1 时,显然只需找到满足2^t >= n的最小整数k,然后2^t - n即为最少需要的瓶子数
(2) 当k > 1时,能合并最多瓶子的最佳方案必定是每次将满足2^t <= n(t为满足不等式的最大整数)的2^t个瓶子的水合到1个瓶子,至k == 1, 按第一步处理即可
代码:
#include <cstring>
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
int main()
{
int t;
cin >> t;
while(t--)
{
int n,k;
cin >> n >> k;
int cnt = 1, l = n;//cnt为能够合并的最少的瓶子数
while(l != 1)
{
int m = l%2;
l /= 2;
cnt += m;
}
if(k == 1)
{
int temp = 1;
while(temp < n)
temp *= 2;
cout << temp - n << endl;
}
else if(k >= cnt)
cout << 0 << endl;
else if(k < cnt)
{
int ans = 0;
while(ans < k-1)
{
int temp = 1;
while(temp < n)
temp *= 2;
n -= (temp/2);
ans++;
}
int p = 1;
while(p < n)
p*=2;
cout << p - n << endl;
}
}
return 0;
}