pandas入门

这些是pandas最基本的操作和我自己的理解


In [1]: import pandas as pd 

In [2]: import numpy as np 
In [3]: import matplotlib.pyplot as plt 


创建对象
使用传递的值列表序列创建序列, 让pandas创建默认整数索引


12345678910 In [4]: s = pd.Series([1,3,5,np.nan,6,8])  #单纯创建序列
In [5]: s 
Out[5]:  
0     1
1     3
2     5
3   NaN 
4     6
5     8
dtype: float64 


使用传递的numpy数组创建数据帧,并使用日期索引和标记列.


123456789101112131415 In [6]: dates = pd.date_range('20130101',periods=6) #使用date_range函数使20130101实现自增且变为时间格式(periods自增的位数,但不包括6)
In [7]: dates 
Out[7]: [2013-01-01, ..., 2013-01-06] 
Length: 6, Freq: D, Timezone: None
   
In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))  #相当于创建oracle的数据表横轴字段为'ABCD',纵轴为dates,数据为numpy的的数组。
In [9]: df 
Out[9]:  
                   A         B         C         D 
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988 


使用传递的可转换序列的字典对象创建数据帧.


#当时看到这一块的时候对C列有些不解(index=list(range(4))),经过测试得知index=list(range(4))其实就是df2的纵轴
1234567891011121314 In [10]: df2 = pd.DataFrame({ 'A' : 1., 
   ....:                      'B' : pd.Timestamp('20130102'), 
   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'), 
   ....:                      'D' : np.array([3] * 4,dtype='int32'), 
   ....:                      'E' : pd.Categorical(["test","train","test","train"]), 
   ....:                      'F' : 'foo' }) 
   ....:  
In [11]: df2 
Out[11]:  
   A          B  C  D      E    F 
0  1 2013-01-02  1  3   test  foo 
1  1 2013-01-02  1  3  train  foo 
2  1 2013-01-02  1  3   test  foo 
3  1 2013-01-02  1  3  train  foo 


所有明确类型


123456789 In [12]: df2.dtypes    #列出各字段的类型
Out[12]:  
A           float64 
B    datetime64[ns] 
C           float32 
D             int32 
E          category 
F            object
dtype: object 


如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:




123456789101112131415161718192021222324 In [13]: df2.  #这个没什么好说的
df2.A                  df2.boxplot 
df2.abs                df2.C 
df2.add                df2.clip 
df2.add_prefix         df2.clip_lower 
df2.add_suffix         df2.clip_upper 
df2.align              df2.columns 
df2.all                df2.combine 
df2.any                df2.combineAdd 
df2.append             df2.combine_first 
df2.apply              df2.combineMult 
df2.applymap           df2.compound 
df2.as_blocks          df2.consolidate 
df2.asfreq             df2.convert_objects 
df2.as_matrix          df2.copy 
df2.astype             df2.corr 
df2.at                 df2.corrwith 
df2.at_time            df2.count 
df2.axes               df2.cov 
df2.B                  df2.cummax 
df2.between_time       df2.cummin 
df2.bfill              df2.cumprod 
df2.blocks             df2.cumsum 
df2.bool               df2.D 


如你所见, 列 A, B, C, 和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.


查看数据
参阅基础部分


查看帧顶部和底部行


123456789101112131415 In [14]: df.head()  #个人理解和linux的head的作用大径相同(linux默认可以看10行,python默认是5行)
Out[14]:  
                   A         B         C         D 
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
   
In [15]: df.tail(3)       #同上
Out[15]:  
                   A         B         C         D 
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988 


显示索引,列,和底层numpy数据


12345678910111213141516 In [16]: df.index #index代表df的纵轴
Out[16]:  
[2013-01-01, ..., 2013-01-06] 
Length: 6, Freq: D, Timezone: None
   
In [17]: df.columns  # columns代表df的y轴
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object') 
   
In [18]: df.values   #df的数据值
Out[18]:  
array([[ 0.4691, -0.2829, -1.5091, -1.1356], 
       [ 1.2121, -0.1732,  0.1192, -1.0442], 
       [-0.8618, -2.1046, -0.4949,  1.0718], 
       [ 0.7216, -0.7068, -1.0396,  0.2719], 
       [-0.425 ,  0.567 ,  0.2762, -1.0874], 
       [-0.6737,  0.1136, -1.4784,  0.525 ]]) 


描述显示数据快速统计摘要


1234567891011 In [19]: df.describe()  
Out[19]:  
              A         B         C         D 
count  6.000000  6.000000  6.000000  6.000000    #数据有多少列
mean   0.073711 -0.431125 -0.687758 -0.233103    #
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804 


转置数据
1234567 In [20]: df.T    #纵轴和横轴互换
Out[20]:  
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988 


按轴排序


123456789 In [21]: df.sort_index(axis=1, ascending=False)  #按照axis=1(横轴的意思) ascending=False(从大到小)
Out[21]:  
                   D         C         B         A 
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690 


按值排序


123456789 In [22]: df.sort(columns='B')   #按照横轴B列的值进行排序
Out[22]:  
                   A         B         C         D 
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401 


选择器


注释: 标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.


参阅索引文档 索引和选择数据 and 多索引/高级索引








读取


选择单列, 这会产生一个序列, 等价df.A


123456789 In [23]: df['A'] 
Out[23]:  
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64 








使用[]选择行片断


12345678910111213 In [24]: df[0:3]  #利用纵轴进行切片
Out[24]:  
                   A         B         C         D 
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
   
In [25]: df['20130102':'20130104'] #利用纵轴坐标值进行切片
Out[25]:  
                   A         B         C         D 
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860 


使用标签选择


更多信息请参阅按标签选择


使用标签获取横截面


1234567 In [26]: df.loc[dates[0]]  #获取数据(没什么说的)
Out[26]:  
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64 


使用标签选择多轴


123456789 In [27]: df.loc[:,['A','B']]    #主要学习loc的用法
Out[27]:  
                   A         B 
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648 








显示标签切片, 包含两个端点


123456 In [28]: df.loc['20130102':'20130104',['A','B']] #略
Out[28]:  
                   A         B 
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771 


降低返回对象维度


12345 In [29]: df.loc['20130102',['A','B']]  #略
Out[29]:  
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64 


获取标量值


12 In [30]: df.loc[dates[0],'A'] 
Out[30]: 0.46911229990718628 


快速访问并获取标量数据 (等价上面的方法)


12 In [31]: df.at[dates[0],'A'] 
Out[31]: 0.46911229990718628 


按位置选择


更多信息请参阅按位置参阅


传递整数选择位置


1234567 In [32]: df.iloc[3] 
Out[32]:  
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64 


使用整数片断,效果类似numpy/python


12345 In [33]: df.iloc[3:5,0:2] 
Out[33]:  
                   A         B 
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020 


使用整数偏移定位列表,效果类似 numpy/python 样式


123456 In [34]: df.iloc[[1,2,4],[0,2]] 
Out[34]:  
                   A         C 
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232 


显式行切片


12345 In [35]: df.iloc[1:3,:] 
Out[35]:  
                   A         B         C         D 
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804 


显式列切片


123456789 In [36]: df.iloc[:,1:3] 
Out[36]:  
                   B         C 
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427 


显式获取一个值


12 In [37]: df.iloc[1,1] 
Out[37]: -0.17321464905330861 








快速访问一个标量(等同上个方法)


12 In [38]: df.iat[1,1] 
Out[38]: -0.17321464905330861 


布尔索引
使用单个列的值选择数据.


123456 In [39]: df[df.A > 0]    #相当于oracle的where A > 0;
Out[39]:  
                   A         B         C         D 
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860 


where 操作.


123456789 In [40]: df[df > 0]  #筛选出值大于0的列   小于0的补NaN
Out[40]:   
                   A         B         C         D 
2013-01-01  0.469112       NaN       NaN       NaN 
2013-01-02  1.212112       NaN  0.119209       NaN 
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN 
2013-01-06       NaN  0.113648       NaN  0.524988 








使用 isin() 筛选:


123456789101112131415161718 In [41]: df2 = df.copy() 
In [42]: df2['E']=['one', 'one','two','three','four','three']   #添加列
   
In [43]: df2 
Out[43]:  
                   A         B         C         D      E 
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one 
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one 
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two 
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three 
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four 
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three 
   
In [44]: df2[df2['E'].isin(['two','four'])]  #isin相当于in
Out[44]:  
                   A         B         C         D     E 
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two 
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four 


赋值
赋值一个新列,通过索引自动对齐数据


123456789101112 In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6)) 
In [46]: s1 
Out[46]:  
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64 
   
In [47]: df['F'] = s1 


按标签赋值


1 In [48]: df.at[dates[0],'A'] = 0 


按位置赋值


1 In [49]: df.iat[0,1] = 0 


通过numpy数组分配赋值


1 In [50]: df.loc[:,'D'] = np.array([5] * len(df)) 


之前的操作结果


123456789 In [51]: df 
Out[51]:  
                   A         B         C  D   F 
2013-01-01  0.000000  0.000000 -1.509059  5 NaN 
2013-01-02  1.212112 -0.173215  0.119209  5   1
2013-01-03 -0.861849 -2.104569 -0.494929  5   2
2013-01-04  0.721555 -0.706771 -1.039575  5   3
2013-01-05 -0.424972  0.567020  0.276232  5   4
2013-01-06 -0.673690  0.113648 -1.478427  5   5 


where 操作赋值.


1234567891011 In [52]: df2 = df.copy() 
In [53]: df2[df2 > 0] = -df2 #df2里的值大于0则取它的负数
In [54]: df2 
Out[54]:  
                   A         B         C  D   F 
2013-01-01  0.000000  0.000000 -1.509059 -5 NaN 
2013-01-02 -1.212112 -0.173215 -0.119209 -5  -1
2013-01-03 -0.861849 -2.104569 -0.494929 -5  -2
2013-01-04 -0.721555 -0.706771 -1.039575 -5  -3
2013-01-05 -0.424972 -0.567020 -0.276232 -5  -4
2013-01-06 -0.673690 -0.113648 -1.478427 -5  -5 








丢失的数据


pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section


重建索引允许更改/添加/删除指定轴索引,并返回数据副本.


123456789 In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E']) 
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1 
Out[57]:  
                   A         B         C  D   F   E 
2013-01-01  0.000000  0.000000 -1.509059  5 NaN   1
2013-01-02  1.212112 -0.173215  0.119209  5   1   1
2013-01-03 -0.861849 -2.104569 -0.494929  5   2 NaN 
2013-01-04  0.721555 -0.706771 -1.039575  5   3 NaN 


删除任何有丢失数据的行.


1234 In [58]: df1.dropna(how='any') #删除有NaN为5的行
Out[58]:  
                   A         B         C  D  F  E 
2013-01-02  1.212112 -0.173215  0.119209  5  1  1 


填充丢失数据


1234567 In [59]: df1.fillna(value=5)   #NaN为5
Out[59]:  
                   A         B         C  D  F  E 
2013-01-01  0.000000  0.000000 -1.509059  5  5  1
2013-01-02  1.212112 -0.173215  0.119209  5  1  1
2013-01-03 -0.861849 -2.104569 -0.494929  5  2  5
2013-01-04  0.721555 -0.706771 -1.039575  5  3  5 


获取值是否nan的布尔标记


1234567 In [60]: pd.isnull(df1) 
Out[60]:  
                A      B      C      D      F      E 
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True 


运算
参阅二元运算基础


统计
计算时一般不包括丢失的数据


执行描述性统计
#df.mean()等价于df.mean(0)。把轴向数据求平均,得到每列数据的平均值。


#df.mean(1)按照另外一个axis的方向来求平均,得到每行数据的平均值。
12345678 In [61]: df.mean()   
Out[61]:  
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64 


在其他轴做相同的运算


123456789 In [62]: df.mean(1) 
Out[62]:  
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64 


用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.


123456789101112131415161718192021 In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2) 
#shift 移动数据的值   且新值为NaN  shift(2) 向下移动2位
In [64]: s 
Out[64]:  
2013-01-01   NaN 
2013-01-02   NaN 
2013-01-03     1
2013-01-04     3
2013-01-05     5
2013-01-06   NaN 
Freq: D, dtype: float64 
   
In [65]: df.sub(s,axis='index')  #所有列减去s的值,0为列,1为行
Out[65]:  
                   A         B         C   D   F 
2013-01-01       NaN       NaN       NaN NaN NaN 
2013-01-02       NaN       NaN       NaN NaN NaN 
2013-01-03 -1.861849 -3.104569 -1.494929   4   1
2013-01-04 -2.278445 -3.706771 -4.039575   2   0
2013-01-05 -5.424972 -4.432980 -4.723768   0  -1
2013-01-06       NaN       NaN       NaN NaN NaN 
Apply 


在数据上使用函数


123456789101112131415161718 In [66]: df.apply(np.cumsum)    #累加器的意思df.loc[dates[0]]保持不变 新的df.iloc[1,0] = 新的df.iloc[0,0] + 旧的df.iloc[1,0]
Out[66]:  
                   A         B         C   D   F 
2013-01-01  0.000000  0.000000 -1.509059   5 NaN 
2013-01-02  1.212112 -0.173215 -1.389850  10   1
2013-01-03  0.350263 -2.277784 -1.884779  15   3
2013-01-04  1.071818 -2.984555 -2.924354  20   6
2013-01-05  0.646846 -2.417535 -2.648122  25  10
2013-01-06 -0.026844 -2.303886 -4.126549  30  15
   
In [67]: df.apply(lambda x: x.max() - x.min())   #以列作为计算
Out[67]:  
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64 


直方图
请参阅 直方图和离散化


12345678910111213141516171819202122 In [68]: s = pd.Series(np.random.randint(0,7,size=10)) 
In [69]: s 
Out[69]:  
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int32 
   
In [70]: s.value_counts()  #相当于oracle select count(1) from test group by 列
Out[70]:  
4    5
6    2
2    2
1    1
dtype: int64 


字符串方法
序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.


12345678910111213 In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) 
In [72]: s.str.lower() 
Out[72]:  
0       a 
1       b 
2       c 
3    aaba 
4    baca 
5     NaN 
6    caba 
7     dog 
8     cat 
dtype: object 


合并


连接


pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.


请参阅合并部分


把pandas对象连接到一起


123456789101112131415161718192021222324252627282930 In [73]: df = pd.DataFrame(np.random.randn(10, 4)) 
In [74]: df 
Out[74]:  
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495
   
# break it into pieces 
In [75]: pieces = [df[:3], df[3:7], df[7:]] 
In [76]: pd.concat(pieces)   #concat函数就是融合数据    使用pd.concat(pieces,keys=['x','y','z'])   keys函数可以指定融合数据的来源
Out[76]:  
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495 


连接


SQL样式合并. 请参阅 数据库style联接


123456789101112131415161718192021 In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) 
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) 
In [79]: left 
Out[79]:  
   key  lval 
0  foo     1
1  foo     2
   
In [80]: right 
Out[80]:  
   key  rval 
0  foo     4
1  foo     5
   
In [81]: pd.merge(left, right, on='key')    #具体请看https://blog.csdn.net/ly_ysys629/article/details/73849543
Out[81]:  
   key  lval  rval 
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5 


添加








添加行到数据增. 参阅 添加


1234567891011121314151617181920212223242526 In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) 
In [83]: df 
Out[83]:  
          A         B         C         D 
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
   
In [84]: s = df.iloc[3] 
In [85]: df.append(s, ignore_index=True) #略过
Out[85]:  
          A         B         C         D 
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610 


分组


对于“group by”指的是以下一个或多个处理


将数据按某些标准分割为不同的组


在每个独立组上应用函数


组合结果为一个数据结构


请参阅 分组部分


123456789101112131415161718 In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 
   ....:                          'foo', 'bar', 'foo', 'foo'], 
   ....:                    'B' : ['one', 'one', 'two', 'three', 
   ....:                          'two', 'two', 'one', 'three'], 
   ....:                    'C' : np.random.randn(8), 
   ....:                    'D' : np.random.randn(8)}) 
   ....:  
In [87]: df 
Out[87]:  
     A      B         C         D 
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033 


分组然后应用函数统计总和存放到结果组


123456 In [88]: df.groupby('A').sum()   #就是group by
Out[88]:  
            C        D 
A                      
bar -2.802588  2.42611
foo  3.146492 -0.63958 


按多列分组为层次索引,然后应用函数


12345678910 In [89]: df.groupby(['A','B']).sum()   #还就是group by 
Out[89]:  
                  C         D 
A   B                         
bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434 


重塑
请参阅章节 分层索引 和 重塑.








堆叠
12345678910111213141516 In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 
   ....:                      'foo', 'foo', 'qux', 'qux'], 
   ....:                     ['one', 'two', 'one', 'two', 
   ....:                      'one', 'two', 'one', 'two']])) 
   ....:  
In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) 
In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) 
In [93]: df2 = df[:4] 
In [94]: df2 
Out[94]:  
                     A         B 
first second                     
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230 


堆叠 函数 “压缩” 数据桢的列一个级别.


12345678910111213 In [95]: stacked = df2.stack() 
In [96]: stacked 
Out[96]:  
first  second    
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64 


被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:


1234567891011121314151617181920212223242526 In [97]: stacked.unstack() 
Out[97]:  
                     A         B 
first second                     
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230
   
In [98]: stacked.unstack(1) 
Out[98]:  
second        one       two 
first                       
bar   A  0.029399  0.282696
      B -0.542108 -0.087302
baz   A -1.575170  0.816482
      B  1.771208  1.100230
   
In [99]: stacked.unstack(0) 
Out[99]:  
first          bar       baz 
second                       
one    A  0.029399 -1.575170
       B -0.542108  1.771208
two    A  0.282696  0.816482
       B -0.087302  1.100230 








数据透视表


查看数据透视表.


123456789101112131415161718192021 In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 
   .....:                    'B' : ['A', 'B', 'C'] * 4, 
   .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, 
   .....:                    'D' : np.random.randn(12), 
   .....:                    'E' : np.random.randn(12)}) 
   .....:  
In [101]: df 
Out[101]:  
        A  B    C         D         E 
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115 


我们可以从此数据非常容易的产生数据透视表:


12345678910111213 In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])  #理解的就是取出需要的数据重新操作
Out[102]:  
C             bar       foo 
A     B                     
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160       NaN 
      B       NaN -1.035018
      C  0.648740       NaN 
two   A       NaN  0.100900
      B -1.170653       NaN 
      C       NaN  0.536826 
#####################################################################先看到这############################################################
时间序列
pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节


123456 In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S') 
In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) 
In [105]: ts.resample('5Min', how='sum') 
Out[105]:  
2012-01-01    25083
Freq: 5T, dtype: int32 


时区表示


1234567891011121314151617181920 In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') 
In [107]: ts = pd.Series(np.random.randn(len(rng)), rng) 
In [108]: ts 
Out[108]:  
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64 
   
In [109]: ts_utc = ts.tz_localize('UTC') 
In [110]: ts_utc 
Out[110]:  
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64 


转换到其它时区


12345678 In [111]: ts_utc.tz_convert('US/Eastern') 
Out[111]:  
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64 








转换不同的时间跨度


1234567891011121314151617181920212223242526272829 In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M') 
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng) 
In [114]: ts 
Out[114]:  
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64 
   
In [115]: ps = ts.to_period() 
In [116]: ps 
Out[116]:  
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64 
   
In [117]: ps.to_timestamp() 
Out[117]:  
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64 








转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据


1234567891011 In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') 
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng) 
In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [121]: ts.head() 
Out[121]:  
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64 


分类
自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the API文档.


In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})








转换原始类别为分类数据类型.


1234567891011 In [123]: df["grade"] = df["raw_grade"].astype("category") 
In [124]: df["grade"] 
Out[124]:  
0    a 
1    b 
2    b 
3    a 
4    a 
5    e 
Name: grade, dtype: category 
Categories (3, object): [a, b, e] 


重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)




1 In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"] 


重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)


1234567891011 In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) 
In [127]: df["grade"] 
Out[127]:  
0    very good 
1         good 
2         good 
3    very good 
4    very good 
5     very bad 
Name: grade, dtype: category 
Categories (5, object): [very bad, bad, medium, good, very good] 


排列分类中的顺序,不是按词汇排列.


123456789 In [128]: df.sort("grade") 
Out[128]:  
   id raw_grade      grade 
5   6         e   very bad 
1   2         b       good 
2   3         b       good 
0   1         a  very good 
3   4         a  very good 
4   5         a  very good 


类别列分组,并且也显示空类别.


123456789 In [129]: df.groupby("grade").size() 
Out[129]:  
grade 
very bad      1
bad         NaN 
medium      NaN 
good          2
very good     3
dtype: float64 


绘图
绘图文档.


1234 In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) 
In [131]: ts = ts.cumsum() 
In [132]: ts.plot() 
Out[132]: 






在数据桢中,可以很方便的绘制带标签列:


123456 In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, 
   .....:                   columns=['A', 'B', 'C', 'D']) 
   .....:  
In [134]: df = df.cumsum() 
In [135]: plt.figure(); df.plot(); plt.legend(loc='best') 
Out[135]: 






获取数据输入/输出
CSV


写入csv文件


1 In [136]: df.to_csv('foo.csv') 


读取csv文件


1234567891011121314151617181920 In [137]: pd.read_csv('foo.csv') 
Out[137]:  
     Unnamed: 0          A          B         C          D 
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          ...        ...        ...       ...        ... 
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
   
[1000 rows x 5 columns] 








HDF5
读写HDF存储


写入HDF5存储


1 In [138]: df.to_hdf('foo.h5','df') 


读取HDF5存储


1234567891011121314151617181920 In [139]: pd.read_hdf('foo.h5','df') 
Out[139]:  
                    A          B         C          D 
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ... 
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
   
[1000 rows x 4 columns] 








Excel
读写MS Excel


写入excel文件


1 In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1') 


读取excel文件


1234567891011121314151617181920 In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) 
Out[141]:  
                    A          B         C          D 
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ... 
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
   
[1000 rows x 4 columns] 


陷阱


如果尝试这样操作可能会看到像这样的异常:


12345 >>> if pd.Series([False, True, False]): 
    print("I was true") 
Traceback 
    ... 
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值