使用opencv和PIL读图像的异同点以及图像翻转的numpy操作
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
src="lena.png"
# opencv的读取显示与保存图像,opencv读取出来的图像直接为numpy格式.
# opencv的一个像素为:[B,G,R] ,matplotlib的一个像素为:[R,G,B]。
#[B,G,R]->[R,G,B]
#1. b,g,r=cv2.split(img) img2=cv2.merge([r,g,b]
#2. img3=img[:,:,::-1]
#3. cv2.cvtColor(img, cv2.COLOR_BGR2RGB
'''
cv2.imread(src)
cv2.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv2.imshow("input image", src)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv2.imwrite(r"H:\test\result.png", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
'''
img = Image.open(src)
print(type(img)) #<class 'PIL.PngImagePlugin.PngImageFile'> PIL有自己的数据结构
np_img=np.array(img)
print(type(np_img),np_img.dtype,np_img.shape) # <class 'numpy.ndarray'> uint8 (512, 512, 3) 默认格式uint8 0-255
img1=np_img[::-1]
img2=np_img[:,:-1]
img3=np_img[:,:,::-1]
plt.subplot(221),plt.imshow(img),plt.title('imput_image')
plt.subplot(222),plt.imshow(img1),plt.title('img1')
plt.subplot(223),plt.imshow(img2),plt.title('img2')
plt.subplot(224),plt.imshow(img3),plt.title('img3')
plt.show()