排队论(Queuing Theory)概率背景

//这部分主要是总结一些概率论的基本知识,有一定了解的读者可以自行跳过

样本空间(Sample Space):我们进行一项实验,并且有一个可能的结果的集合\Omega。这个\Omega就被称为:样本空间。样本空间可以使离散的,也可以是连续的。

 事件(Event):样本空间\Omega的子集

 Theorem:P\left \{ E\cup F \right \}\leq P\left \{E \right \}+P\left \{ F \right \}

条件概率(Conditional Probability):P\left \{ E|F \right \}= \frac{P\left \{ E\cap F \right \}}{P\left \{ F \right \}} where P{F}>0

事件E与F相互独立:P\left \{ E\cap F \right \}= P\left \{ E \right \}\cdot P\left \{ F \right \}

        注意到如果E与F相互独立,则P\left \{ E|F \right \}=P\left \{ E \right \},即E不会受到F的影响

事件E与F互斥(Mutually exclusive):P\left \{ E\cap F \right \}=\phi

        当E与F互斥时,E与F绝对不是相互独立的。因为P\left \{ E|F \right \}=0\neq P\left \{ E \right \}

全概率公式(Law of total probability):F1,F2......Fn分割样本空间\Omega。那么有P\left \{ E \right \}=P\left \{ E|F1 \right \}\cdot P\left \{ F \right \}+\cdot \cdot \cdot P\left \{ E|Fn \right \}\cdot P\left \{ Fn \right \}=\sum_{i=1}^{n}P\left \{ E|Fi \right \}\cdot P\left \{ Fi \right \}

 贝叶斯公式(Bayes Law):P\left \{ F|E \right \}=\frac{P\left \{ E|F \right \}\cdot P\left \{ F \right \}}{P\left \{ E \right \}}

 贝叶斯公式的延伸(Extended Bayes Law):P\left \{ F|E \right \}=\frac{P\left \{ E|F \right \}\cdot P\left \{ F \right \}}{\sum_{i=1}^{n}P\left \{ E|Fi \right \}\cdot P\left \{ Fi \right \}}

离散:

概率质量函数(probability mass function-pmf):P_{x}(a)=P\left \{ x=a \right \} where\sum_{\chi \in \Omega }^{}P_{x}(\chi )

积累分布函数(cumulative distribution function):F_{x}(a)=P\left \{ x\leq a \right \}=\sum_{\chi \leq a}^{}P_{x}(\chi )

伯努利分布-Bernoulli(p):X 是投单个硬币的结果

 Px(1)=p,Px(0)=1-p

二项分布-Binominal(n,p):在投n次硬币后,X为结果为head的次数

P_{x}(i)=\left ( _{i}^{n}\textrm{} \right )p^{i}(1-p)^{n-i}       where i=0,1,2,3.....n

几何分布-Geometric(p):X为硬币直到出现head的投掷次数

P_{x}(i)=P\left \{ X=i \right \}=(1-p)^{i-1}\cdot p          i=1,2,3....n

泊松分布-Poisson(λ):P_{x}(i)=\frac{e^{-\lambda }\cdot \lambda ^{i}}{i!}      where i=0,1,2,3....

连续:

概率密度函数(Probability density function):P\left \{ a\leq X\leq b \right \}=\int_{a}^{b}f_{x}(\chi )d\chi  and \int_{-\infty }^{+\infty}f_{x}(\chi )d\chi =1

积累分布函数(cumulative distribution function):F_{x}(a)=P\left \{ -\infty < X\leq a \right \}=\int_{-\infty}^{+\infty}f_{x}(\chi )d\chi

两者的关系:f_{x}=\frac{\mathrm{d} }{\mathrm{d} x}\int_{-\infty }^{\chi }f(t)dt=\frac{\mathrm{d} }{\mathrm{d} x}F_{x}(\chi )

平均分布-Uniform(a,b):

 f_{x}(\chi )=\begin{cases} \frac{1}{b-a} & \text{ if }a \leq x\leq b \\ \phi & \text{ if } otherwise \end{cases}

指数分布-Exponention(λ):

f_{x}(\chi )=\begin{cases} \lambda e^{-\lambda x} & \text{ if } x\geq 0 \\ 0 & \text{ if } x<0 \end{cases}

Pareto(α),0<α<2:

f_{x}=\alpha x^{-\alpha -1}           where x>1

Normal(μ,\sigma)

 f_{x}=\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{1}{2}(\frac{x-\mu }{\sigma })^{2}}

期望:

Discrete case:E[X]=\sum xP_{x}(x)

continuous case:E[X]=\int_{-\infty }^{+\infty }xf_{x}(x)dx

Bernoulli(p):E[X]=p

Binomial(n,p):E[X]=np

Geometric(p):E[X]=\frac{1}{p}

Poisson(λ):E[X]=\lambda

Exp(λ):E[X]=\frac{1}{\lambda }

Uniform(a,b):E[X]=\frac{a+b}{2}

Pareto(α):E[X]=\begin{cases} \infty & \text{ if } \alpha \leq 1 \\ \frac{\alpha }{\alpha -1} & \text{ if } \alpha > 1 \end{cases}

Normal(μ,\sigma):E[X]=\mu

联合概率与独立:

        离散P_{x,y}=P\left \{ X=x\&Y=y \right \},

        连续\int_{c}^{d}\int_{a}^{b}f_{x,y}(x,y)dxdy=P\left \{ a<x<b\&c<y<d \right \}

        独立如果X与Y相互独立则写成X⊥Y,同样如果f_{X,Y}(x,y)=f_{X}(x)\cdot f_{Y}(y),则我们说X,Y相互独立

期望的线性性质:E[X+Y]=E[X]+E[Y](这里不需要X⊥Y)

练习:

这里提供一个书上的练习,并提供解答,供各位理解。

        期望脑筋急转弯:有一个朋友告诉我,在他上学的第一年,他从未参加过不到90名学生的课程。他说几乎所有的朋友都有相同的经历。然而,院长缺坚持认为平均新生班级规模为30名学生。为什么会这样?

        解答:这里我们必须注意两种不同的测量方法。Dean:aspect over classes;Students:aspect over what students see.

                   比如这里我们有10个班级,每个班5个人,另有一个班有280人。对于院长来说期望为\frac{10\times 5+280}{11}=30。从学生的视角来看,朋友在280人班级的概率为\frac{280}{330},在5人班级的概率为\frac{50}{330}。对于学生来说,平均期望为\frac{50}{330}\times 5+\frac{280}{330}\times 280

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值