Leetcode之Frog Jump

题目:

A frog is crossing a river. The river is divided into x units and at each unit there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stones' positions (in units) in sorted ascending order, determine if the frog is able to cross the river by landing on the last stone. Initially, the frog is on the first stone and assume the first jump must be 1 unit.

If the frog's last jump was k units, then its next jump must be either k - 1, k, or k + 1 units. Note that the frog can only jump in the forward direction.

Note:

  • The number of stones is ≥ 2 and is < 1,100.
  • Each stone's position will be a non-negative integer < 231.
  • The first stone's position is always 0.

 

Example 1:

[0,1,3,5,6,8,12,17]

There are a total of 8 stones.
The first stone at the 0th unit, second stone at the 1st unit,
third stone at the 3rd unit, and so on...
The last stone at the 17th unit.

Return true. The frog can jump to the last stone by jumping 
1 unit to the 2nd stone, then 2 units to the 3rd stone, then 
2 units to the 4th stone, then 3 units to the 6th stone, 
4 units to the 7th stone, and 5 units to the 8th stone.

 

Example 2:

[0,1,2,3,4,8,9,11]

Return false. There is no way to jump to the last stone as 
the gap between the 5th and 6th stone is too large.

代码:

方法一——二维数组动态规划:

class Solution {
public:
    bool canCross(vector<int>& stones) {
        long last = stones.back();
    int len = stones.size();
    sort(stones.begin(), stones.end());
    if(last==INT_MAX)return false;
    vector<vector<bool>> s(last + 1, vector<bool>(last + 1, 0));
    s[0][0] = true;
    for (int i = 1; i < len; i++) {
        for (int j = 1; j <= i; j++) {
            int v = stones[i];
            s[v][j] = s[v - j][j + 1] || s[v - j][j] || s[v - j][j - 1];
        }
    }
    bool res = false;
    for (int i = 0; i <= last; i++) {
        res |= s[last][i];
    }
    return res;
    }
};

方法二——递归方法:

class Solution {
public:
    bool canCross(vector<int>& stones) {
        unordered_map<int, bool> m;
        return helper(stones, 0, 0, m);
    }
    bool helper(vector<int>& stones, int pos, int jump, unordered_map<int, bool>& m) {
        int n = stones.size(), key = pos | jump << 11;
        if (pos >= n - 1) return true;
        if (m.count(key)) return m[key];
        for (int i = pos + 1; i < n; ++i) {
            int dist = stones[i] - stones[pos];
            if (dist < jump - 1) continue;
            if (dist > jump + 1) return m[key] = false;
            if (helper(stones, i, dist, m)) return m[key] = true;
        }
        return m[key] = false;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值