题目:
集团里有 n 名员工,他们可以完成各种各样的工作创造利润。
第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。
工作的任何至少产生 minProfit 利润的子集称为盈利计划。并且工作的成员总数最多为 n 。
有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7 的值。
示例 1:
输入:n = 5, minProfit = 3, group = [2,2], profit = [2,3]
输出:2
解释:至少产生 3 的利润,该集团可以完成工作 0 和工作 1 ,或仅完成工作 1 。
总的来说,有两种计划。
示例 2:
输入:n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:至少产生 5 的利润,只要完成其中一种工作就行,所以该集团可以完成任何工作。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。
提示:
1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100
代码:
方法一——一维数组的0,1背包问题;
class Solution {
public:
int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {
int maxprofit=0;
for(int i=0;i<profit.size();i++){
maxprofit+=profit[i];
}
vector<int> p(maxprofit+1,0);
vector<vector<int>> people(maxprofit+1,vector<int>());
p[0]=1;people[0]={n};
for(int i=0;i<group.size();i++){
for(int j=maxprofit;j>=0;j--){
if(j-profit[i]>=0&&p[j-profit[i]]!=-1){
for(int k=0;k<people[j-profit[i]].size();k++){
if(people[j-profit[i]][k]>=group[i]){
p[j]+=1;
p[j]%=1000000007;
people[j].push_back(people[j-profit[i]][k]-group[i]);
}
}
}
}
}
int result=0;
for(int i=minProfit;i<p.size();i++){
if(p[i]==-1)continue;
result+=p[i];
result%=1000000007;
}
return result%1000000007;
}
};
想法:超市版本,转化为0-1背包问题;0-1背包的核心在于倒序遍历;非零一背包的核心在于正序遍历;这个超时了,明天探索不超时版本;
方法二——二维数组的0-1背包问题:
class Solution {
public:
int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {
int G=group.size();
int dp[n+1][minProfit+1];
memset(dp,0,sizeof(dp));
for(int cost=0;cost<n+1;cost++){
dp[cost][0]=1;
}
for(int i=0;i<G;i++){
int cost=group[i];
int prof=profit[i];
for(int people=n;people>cost-1;people--){
for(int money=minProfit;money>-1;money--){
dp[people][money]+=dp[people-cost][max(money-prof,0)];
dp[people][money]%=1000000007;
}
}
}
return dp[n][minProfit];
}
};
想法:dp[i][j]表示i个人,至少产生j的利润,有多少种方案;那么动态转移关系式是:dp[i][j]+=dp[i-cost][max(j-prof,0)],最后返回的是dp[n][minProfit],这是一个非常经典的动态规划问题。