879. 盈利计划

3 篇文章 0 订阅

帮派里有 G 名成员,他们可能犯下各种各样的罪行。

第 i 种犯罪会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。

让我们把这些犯罪的任何子集称为盈利计划,该计划至少产生 P 的利润。

有多少种方案可以选择?因为答案很大,所以返回它模 10^9 + 7 的值

 

示例 1:

输入:G = 5, P = 3, group = [2,2], profit = [2,3]
输出:2
解释: 
至少产生 3 的利润,该帮派可以犯下罪 0 和罪 1 ,或仅犯下罪 1 。
总的来说,有两种方案。

示例 2:

输入:G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:
至少产生 5 的利润,只要他们犯其中一种罪就行,所以该帮派可以犯下任何罪行 。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。

 

提示:

  1. 1 <= G <= 100
  2. 0 <= P <= 100
  3. 1 <= group[i] <= 100
  4. 0 <= profit[i] <= 100
  5. 1 <= group.length = profit.length <= 100

思路:

1.递归

设flag[k][g][p]表示从k个犯罪任务开始时,最多有g个成员,至少达到收益p的计划个数

对于第k个计划来说,如果它所需要的人数小于等于g,那么我们选择将其加入,进而探索dp[k+1][g-G[k]][max(p-P[k],0)]。这是选择使用k的数量,还有不使用k的数量dp[k+1][g][p];

当递归到某一层k>=N,G>=0,P<=0时候(这意味着大于利润P的结果也会继续递归下去),返回1,如果在k>=N时,G<0,返回0

Code:

class Solution {
public:
    // 从第 k 个犯罪开始, 最多G个罪犯,至少获取 P 的收益,的可能数
    int profitableSchemes(int flag[101][101][101], int G, int P, vector<int>& group, vector<int>& profit, int k)
    {
        if(k >= group.size() && P <= 0 && G >= 0) return 1;
        else if(G < 0 || k >= group.size()) return 0;

        if(flag[G][P][k] != 0) return flag[G][P][k]-1;
        int ans = 0;

        if(G >= group[k]) 
        {
            int tp = P - profit[k];
            if(tp < 0) tp = 0;
            ans = profitableSchemes(flag, G-group[k], tp, group, profit, k+1);
        }
        ans = (ans + profitableSchemes(flag, G, P, group, profit, k+1))%1000000007;

        flag[G][P][k] = ans+1;
        return ans;
    }
    int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) 
    {
        int flag[101][101][101] = {0};
        return profitableSchemes(flag, G, P, group, profit, 0);
    }
};

方法二:二维背包

这道题相当于二维背包问题,有两种价值的东西需要考虑,这道题需要考虑的就是人数和利润,使用dp去求解,详细思路看c++代码!

class Solution {
public:
    int profitableSchemes(int g, int p, vector<int>& grp, vector<int>& prf) {
        int M = 1000000007;
        vector<vector<int> > result(p + 1, vector<int>(g + 1));
        //因为索引从0开始,加1的目的是让数组显示赚p利润,有g个人
        w[0][0] = 1;//赚钱为0,0个人只有一种结果
        for (int i = 0; i < grp.size(); ++i)
        {//有几组
           int ng = grp[i], pr = prf[i];//对应的人数和利润
           for (int j = p; j >= 0; --j) 
           {//利润
               for (int k = g; k >= 0; --k) 
               {//人数
                    if (k + ng > g|!w[j][k]) 
                    //大于总人数或者方法为空就忽略
                        continue;

                    (result[min(p, j + pr)][k + ng] += result[j][k]) %= M;
         //min(p,j+pr)意味着如果j+pr利润大于p,都把利润大的事件加在利润为p上,而且数组result不用开很大去适应利润大于p的情况
         //因为测试例子中给的都是选(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2)这些情况
         //如果直接用dp,给result的一维和二维不断加人数和利润,这就相当于把这些情况加到同一个集合里面,最后直接输出结果就好
                }
            }
        }
        int ret = 0;
        for (int i = 0; i <= g; ++i)
            (ret += w[p][i]) %= M;
        return ret;
    }
};

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值