题目:
力扣团队买了一个可编程机器人,机器人初始位置在原点(0, 0)。小伙伴事先给机器人输入一串指令command,机器人就会无限循环这条指令的步骤进行移动。指令有两种:
U: 向y轴正方向移动一格
R: 向x轴正方向移动一格。
不幸的是,在 xy 平面上还有一些障碍物,他们的坐标用obstacles表示。机器人一旦碰到障碍物就会被损毁。
给定终点坐标(x, y),返回机器人能否完好地到达终点。如果能,返回true;否则返回false。
示例 1:
输入:command = "URR", obstacles = [], x = 3, y = 2
输出:true
解释:U(0, 1) -> R(1, 1) -> R(2, 1) -> U(2, 2) -> R(3, 2)。
示例 2:
输入:command = "URR", obstacles = [[2, 2]], x = 3, y = 2
输出:false
解释:机器人在到达终点前会碰到(2, 2)的障碍物。
示例 3:
输入:command = "URR", obstacles = [[4, 2]], x = 3, y = 2
输出:true
解释:到达终点后,再碰到障碍物也不影响返回结果。
代码:
方法一——超时:
import numpy as np
class Solution(object):
def robot(self, command, obstacles, x, y):
"""
:type command: str
:type obstacles: List[List[int]]
:type x: int
:type y: int
:rtype: bool
"""
dic={'U':np.asarray([0,1]),'R':np.asarray([1,0])}
start=np.asarray([0,0])
while True:
for c in command:
start+=dic[c]
if list(start) in obstacles:
return False
if start[0]==x and start[1]==y:
return True
if start[0]>x or start[1]>y:
return False
想法:每一步每一步按照它走的步数进行循环,如果当前的位置在obstacles中,那么返回False;如果当前的步数等于终点,那么返回True,如果当前的步数中的x或者y超过终点,那么返回False;
方法二——使用long数字记录x和y坐标,使用unordered_set保存起来,然后进行判断;
class Solution {
public:
bool robot(string command, vector<vector<int>>& obstacles, int x, int y) {
unordered_set<long> s;
int xx=0,yy=0;
s.insert(0);
for(auto c:command){
if(c=='U')yy++;
else if(c=='R')xx++;
s.insert(((long)xx<<30)|yy);
}
int circle=min(x/xx,y/yy);
if(s.count(((long)(x-circle*xx)<<30)|(y-circle*yy))==0)return false;
for(auto v:obstacles){
if(v.size()!=2)continue;
if(v[0]>x||v[1]>y)continue;
circle=min(v[0]/xx,v[1]/yy);
if(s.count(((long)(v[0]-circle*xx)<<30)|(v[1]-circle*yy)))return false;
}
return true;
}
};
思路:机器人会无限循环地按照command中的指令进行移动,我们可以记录下机器人在一次循环中所经过的坐标,后续循环中到达的坐标都可以推测出来;
例如,command='RRU',则在一次循环中机器人会经过(0,0),(1,0),(2,0),(2,1)这4个点,在第二次循环中,它会经过(3,1),(4,1),(4,2)这三个点。在第三次循环中会经过(5,2),(6,2),(6,3)这三个点...
已知机器人在第一次循环中走过的所有点,和向右移动的总距离xx,和向上移动的总距离yy;给出任意一个点(m,n),如何判断这个点是否在机器人的运动轨迹中?
可以先计算出从原点到(m,n)需要走多少个循环,也就是横坐标循环的次数与纵坐标循环的次数的较小值:circle=min(m/xx,n/yy)。然后我们就可以得到点(m,n)相当于第一次循环中的哪个点,如果这个点在第一次的循环轨迹中,那么机器人一定可以到达该点,反之则不能到达;
在本题中,机器人能够完好地到达终点需要满足两个条件:
1、终点一定在机器人的运动的轨迹中(一定在第一次循环的轨迹中)
2、所有障碍物的坐标都不在机器人运动的轨迹中(一定不在第一次循环的轨迹中)
核心在于,使用long数组来存储机器人的轨迹坐标;