量纲的特征缩放

# -*- coding: utf-8 -*-
"""
演示内容:量纲的特征缩放
(两种方法:标准化缩放法和区间缩放法。每种方法举了两个例子:简单二维矩阵和iris数据集)
"""
#方法1:标准化缩放法 例1:对简单示例二维矩阵的列数据进行
from sklearn import preprocessing   
import numpy as np  
#采用numpy的array表示,因为要用到其mean等函数,而list没有这些函数
#对X进行量纲缩放
X = np.array([[0, 0], 
        [0, 0], 
        [100, 1], 
        [1, 1]])  
# calculate mean  
X_mean = X.mean(axis=0)  
# calculate variance   
X_std = X.std(axis=0)  
#print (X_std)
# standardize X  
X1 = (X-X_mean)/X_std
print (X1)
print ("")
 
# we can also use function preprocessing.scale to standardize X  
X_scale = preprocessing.scale(X)  #量纲缩放的方法2.直接调用函数
print (X_scale)
 
 
#方法1: 标准化缩放法 例2:对iris数据二维矩阵的列数据进行。这次采用一个集成的方法StandardScaler
from sklearn import datasets
iris = datasets.load_iris()
X_scale = preprocessing.scale(iris.data)  
print (X_scale)
# 以上的方法对
#方法2: 区间缩放法 例3:对简单示例二维矩阵的列数据进行
from sklearn.preprocessing import MinMaxScaler
 
data = [[0, 0], 
        [0, 0], 
        [100, 1], 
        [1, 1]]
 
scaler = MinMaxScaler()
print(scaler.fit(data))
print(scaler.transform(data))
 
#方法2: 区间缩放法 例4:对iris数据二维矩阵的列数据进行
from sklearn.preprocessing import MinMaxScaler
 
data = iris.data
 
scaler = MinMaxScaler()
print(scaler.fit(data))
print(scaler.transform(data))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值