[LeetCode] 279. Perfect Squares 完全平方数

[LeetCode] 279. Perfect Squares 完全平方数

问题描述:给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:

输入: n = 12
输出: 3 
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

1. 数学定理

完全平方指用一个整数乘以自己例如1 * 1,2 * 2,3 * 3等,依此类推。若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数
四平方和定理:每个正整数均可表示为不超过4个完全平方数的和。 因为任何数加上0²都不变。所以对于不够4个完全平方数的可以用0²补齐,于是四平方和定理等价为:任意一个正整数都可以写成4个完全平方数的和。 它是费马多边形数定理华林问题的特例。
注意有些整数不可表示为3个完全平方数的和,例如7。

1743年,瑞士数学家欧拉发现了一个著名的恒等式:

(a2 + b2 + c2+ d2)(x2 + y2 + z2+ w2) = (ax + by + cz + dw)2 + (ay - bx + cw - dz)2 + (az - bw - cx + dy)2 + (aw + bz - cy - dx)2

根据上述欧拉恒等式或四元数的概念可知如果正整数m和n能表示为4个整数的平方和,则其乘积mn也能表示为4个整数的平方和。于是为证明原命题只需证明每个素数可以表示成4个整数的平方和即可。

1751年,欧拉又得到了另一个一般的结果。

对任意奇素数 p,同余方程 x2+y2+1≡0(mod p)必有一组整数解x,y满足0≤x<p/2,0≤y<p/2 (引理一)

同余方程是一个数学方程式。该方程式的内容为:对于一组整数Z,Z里的每一个数都除以同一个数m,得到的余数可以为0,1,2,…m-1,共m种。我们就以余数的大小作为标准将Z分为m类。每一类都有相同的余数。

至此,证明四平方和定理所需的全部引理已经全部证明完毕。此后,拉格朗日和欧拉分别在1770年和1773年作出最后的证明。

2. 代码实现

2.1 根据四平方和定理

根据四平方和定理,结果就是1,2,3,4中的一个。首先需要对数字进行简化,有两条规则:
规则1:如果这个数对4取余得0,可以把4除去(易知,这个过程可以不断重复),不影响结果;
规则2:对4取余结束后,如果这个数对8取余得7,

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值