1. 实数的公理化描述
逆元的唯一性
证明,加法逆元
−
x
-x
−x是唯一的,即如果
x
′
∈
R
x'\in\R
x′∈R也满足
x
+
x
′
=
0
x+x'=0
x+x′=0,那么
x
′
=
−
x
x'=-x
x′=−x。
证明:
x
′
=
0
+
x
′
=
(
x
+
(
−
x
)
)
+
x
′
=
(
(
−
x
)
+
x
)
+
x
′
=
(
−
x
)
+
(
x
+
x
′
)
=
(
−
x
)
+
0
=
0
+
(
−
x
)
=
−
x
x'=0+x'=(x+(-x))+x'=((-x)+x)+x'=(-x)+(x+x')=(-x)+0=0+(-x)=-x
x′=0+x′=(x+(−x))+x′=((−x)+x)+x′=(−x)+(x+x′)=(−x)+0=0+(−x)=−x
证明中第一个和第七个等号是因为加法单位元的定义,第二个和第五个等号是因为加法逆元的定义,第三个和第六个等号是因为加法交换律,第四个等号是因为加法结合律。
证明,
x
≠
0
x\neq0
x=0时乘法逆元
x
−
1
x^{-1}
x−1是唯一的,即如果
x
′
∈
R
x'\in\R
x′∈R也满足
x
⋅
x
′
=
1
x\cdot x'=1
x⋅x′=1那么
x
′
=
x
−
1
x'=x^{-1}
x′=x−1。
证明:
x
′
=
1
⋅
x
′
=
(
x
⋅
x
−
1
)
⋅
x
′
=
(
x
−
1
⋅
x
)
⋅
x
′
=
x
−
1
⋅
(
x
⋅
x
′
)
=
x
−
1
⋅
1
=
1
⋅
x
−
1
=
x
−
1
x'=1\cdot x'=(x\cdot x^{-1})\cdot x'=(x^{-1}\cdot x)\cdot x'=x^{-1}\cdot(x\cdot x')=x^{-1}\cdot 1=1\cdot x^{-1}=x^{-1}
x′=1⋅x′=(x⋅x−1)⋅x′=(x−1⋅x)⋅x′=x−1⋅(x⋅x′)=x−1⋅1=1⋅x−1=x−1
证明中第一个和第七个等号是因为乘法单位元的定义,第二个和第五个等号是因为乘法逆元的定义,第三个和第六个等号是因为乘法交换律,第四个等号是因为乘法结合律。
消去律,分数的运算法则以及符号运算
1) 证明,对任意的
x
,
y
∈
R
x,y\in\R
x,y∈R,如果
b
≠
0
b\neq0
b=0,我们有
x
+
a
=
y
+
a
⇒
x
=
y
;
x
⋅
b
=
y
⋅
b
⇒
x
=
y
x+a=y+a\Rightarrow x=y;~x\cdot b=y\cdot b\Rightarrow x=y
x+a=y+a⇒x=y; x⋅b=y⋅b⇒x=y
证明:
x
+
a
=
y
+
a
x+a=y+a
x+a=y+a,在等号两边加上
a
a
a的加法逆元得
(
x
+
a
)
−
a
=
(
y
+
a
)
−
a
(x+a)-a=(y+a)-a
(x+a)−a=(y+a)−a,这里采用了加上一个数的乘法逆元的简便写法。根据加法结合律有
x
+
(
a
−
a
)
=
y
+
(
a
−
a
)
x+(a-a)=y+(a-a)
x+(a−a)=y+(a−a),根据加法逆元的定义有
x
+
0
=
y
+
0
x+0=y+0
x+0=y+0,根据加法交换律以及加法单位元的定义有
x
=
y
x=y
x=y。
x ⋅ b = y ⋅ b x\cdot b=y\cdot b x⋅b=y⋅b,在等号两边乘上 b b b的乘法逆元(由 b ≠ 0 b\neq0 b=0得b的乘法逆元存在)得 x ⋅ b ⋅ b − 1 = y ⋅ b ⋅ b − 1 x\cdot b\cdot b^{-1}=y\cdot b\cdot b^{-1} x⋅b⋅b−1=y⋅b⋅b−1。根据乘法结合律有 x ⋅ ( b ⋅ b − 1 ) = y ⋅ ( b ⋅ b − 1 ) x\cdot (b\cdot b^{-1})=y\cdot (b\cdot b^{-1}) x⋅(b⋅b−1)=y⋅(b⋅b−1),根据乘法逆元的定义有 x ⋅ 1 = y ⋅ 1 x\cdot 1=y\cdot 1 x⋅1=y⋅1,根据乘法交换律以及乘法单位元的定义有 x = y x=y x=y。
2) 证明,对任意的
x
x
x,
y
y
y,
z
z
z,
w
w
w,如果
y
≠
0
,
z
≠
0
y\neq0,z\neq0
y=0,z=0,那么我们有
x
y
+
z
w
=
x
w
+
z
x
y
w
,
x
y
⋅
z
w
=
x
⋅
z
y
⋅
w
\frac{x}{y}+\frac{z}{w}=\frac{xw+zx}{yw},\frac{x}{y}\cdot\frac{z}{w}=\frac{x\cdot z}{y\cdot w}
yx+wz=ywxw+zx,yx⋅wz=y⋅wx⋅z
证明:
先证明对于
a
≠
0
,
b
≠
0
,
a
−
1
b
−
1
=
(
a
b
)
−
1
a\neq0,b\neq0,a^{-1}b^{-1}=(ab)^{-1}
a=0,b=0,a−1b−1=(ab)−1。由于
(
a
b
)
(
a
−
1
b
−
1
)
=
(
a
a
−
1
)
(
b
b
−
1
)
=
1
⋅
1
=
1
(ab)(a^{-1}b^{-1})=(aa^{-1})(bb^{-1})=1\cdot1=1
(ab)(a−1b−1)=(aa−1)(bb−1)=1⋅1=1,而一个非零数的乘法逆元是唯一的,因此
a
−
1
b
−
1
=
(
a
b
)
−
1
a^{-1}b^{-1}=(ab)^{-1}
a−1b−1=(ab)−1,得证。
下面证明题目中的命题:
x
y
+
z
w
=
x
y
−
1
+
z
w
−
1
=
(
x
y
−
1
)
(
w
w
−
1
)
+
(
z
w
−
1
)
(
y
y
−
1
)
=
(
x
w
)
(
y
−
1
w
−
1
)
+
(
z
y
)
(
y
−
1
w
−
1
)
=
(
x
w
+
z
y
)
(
y
−
1
w
−
1
)
=
(
x
w
+
z
y
)
(
y
w
)
−
1
=
x
w
+
z
y
y
w
\frac{x}{y}+\frac{z}{w}=xy^{-1}+zw^{-1}=(xy^{-1})(ww^{-1})+(zw^{-1})(y y^{-1})=(xw)(y^{-1}w^{-1})+(zy)(y^{-1}w^{-1})=(xw+zy)(y^{-1}w^{-1})=(xw+zy)(yw)^{-1}=\frac{xw+zy}{yw}
yx+wz=xy−1+zw−1=(xy−1)(ww−1)+(zw−1)(yy−1)=(xw)(y−1w−1)+(zy)(y−1w−1)=(xw+zy)(y−1w−1)=(xw+zy)(yw)−1=ywxw+zy。
x
y
⋅
z
w
=
(
x
y
−
1
)
(
z
w
−
1
)
=
(
x
z
)
(
y
−
1
w
−
1
)
=
(
x
z
)
(
y
w
)
−
1
=
x
⋅
z
y
⋅
w
\frac{x}{y}\cdot\frac{z}{w}=(xy^{-1})(zw^{-1})=(xz)(y^{-1}w^{-1})=(xz)(yw)^{-1}=\frac{x\cdot z}{y\cdot w}
yx⋅wz=(xy−1)(zw−1)=(xz)(y−1w−1)=(xz)(yw)−1=y⋅wx⋅z。
3) 证明,对于任意非零的
x
x
x和
y
y
y,我们有
(
x
y
)
−
1
=
y
x
(\frac{x}{y})^{-1}=\frac{y}{x}
(yx)−1=xy
证明:即证
y
x
−
1
yx^{-1}
yx−1是
x
y
−
1
xy^{-1}
xy−1的乘法逆元。由
(
y
x
−
1
)
(
x
y
−
1
)
=
(
y
y
−
1
)
(
x
−
1
x
)
=
1
⋅
1
=
1
(yx^{-1})(xy^{-1})=(yy^{-1})(x^{-1}x)=1\cdot1=1
(yx−1)(xy−1)=(yy−1)(x−1x)=1⋅1=1得证。
4) 证明, ( − 1 ) ⋅ x = − x (-1)\cdot x=-x (−1)⋅x=−x。据此,进一步证明 ( − x ) ⋅ y = − ( x y ) , ( − x ) ⋅ ( − y ) = x y (-x)\cdot y=-(xy),(-x)\cdot(-y)=xy (−x)⋅y=−(xy),(−x)⋅(−y)=xy
证明:
先证明对任意的
x
x
x有
0
⋅
x
=
0
0\cdot x=0
0⋅x=0:
0
+
0
x
=
0
x
=
(
0
+
0
)
x
=
0
x
+
0
x
0+0x=0x=(0+0)x=0x+0x
0+0x=0x=(0+0)x=0x+0x,根据1)可得
0
=
0
x
0=0x
0=0x,得证。
下面证明题目中的命题:
x
+
(
−
1
)
⋅
x
=
1
⋅
x
+
(
−
1
)
⋅
x
=
(
1
−
1
)
⋅
x
=
0
⋅
x
=
0
x+(-1)\cdot x=1\cdot x+(-1)\cdot x=(1-1)\cdot x=0\cdot x=0
x+(−1)⋅x=1⋅x+(−1)⋅x=(1−1)⋅x=0⋅x=0,故
(
−
1
)
⋅
x
(-1)\cdot x
(−1)⋅x是
x
x
x的加法逆元,得证。
因此,
(
−
x
)
⋅
y
=
(
(
−
1
)
x
)
⋅
y
=
(
−
1
)
(
x
y
)
=
−
(
x
y
)
(-x)\cdot y=((-1)x)\cdot y=(-1)(xy)=-(xy)
(−x)⋅y=((−1)x)⋅y=(−1)(xy)=−(xy),
(
−
x
)
⋅
(
−
y
)
=
(
(
−
1
)
x
)
⋅
(
(
−
1
)
y
)
=
(
−
1
)
(
−
1
)
(
x
y
)
=
(
−
(
−
1
)
)
(
x
y
)
=
1
⋅
(
x
y
)
=
x
y
(-x)\cdot(-y)=((-1)x)\cdot ((-1)y)=(-1)(-1)(xy)=(-(-1))(xy)=1\cdot (xy)=xy
(−x)⋅(−y)=((−1)x)⋅((−1)y)=(−1)(−1)(xy)=(−(−1))(xy)=1⋅(xy)=xy,这里
−
(
−
1
)
=
1
-(-1)=1
−(−1)=1因为
(
−
1
)
+
1
=
0
(-1)+1=0
(−1)+1=0。
不等式的运算
1) 证明, x ≥ 0 x\ge0 x≥0等价于 − x ≤ 0 -x\le0 −x≤0; y > 1 y>1 y>1可以推出 0 < 1 y < 1 0<\frac{1}{y}<1 0<y1<1。进一步证明, x ≥ y x\ge y x≥y等价于 − x ≤ − y -x\le-y −x≤−y。
证明:
第一个命题:设
x
≥
0
x\ge0
x≥0,根据
≥
\ge
≥的定义有
0
≤
x
0\le x
0≤x,由于有序与加法相容可以在不等号两侧同时加上
x
x
x的加法逆元得
−
x
≤
0
-x\le0
−x≤0,完成了一个方向的证明;现在设
−
x
≤
0
-x\le0
−x≤0,用几乎相同的步骤可以推出
x
≥
0
x\ge0
x≥0。
第二个命题:设 y > 1 y>1 y>1,两侧加上 − 1 -1 −1得 y − 1 > 0 y-1>0 y−1>0。先证 y y y的逆元存在即 y ≠ 0 y\neq0 y=0。通过证明 1 > 0 1>0 1>0来得到(证明见2)。因此由传递性 y > 0 y>0 y>0即 y ≠ 0 y\neq0 y=0,得证;
用反证法,先假设 y − 1 ≥ 1 y^{-1}\ge1 y−1≥1,根据有序与加法的相容性有 ( y − 1 ) ≥ 0 且 ( y − 1 − 1 ) ≥ 0 (y-1)\ge0且(y^{-1}-1)\ge0 (y−1)≥0且(y−1−1)≥0,根据有序与乘法相容得 ( y − 1 ) ( y − 1 − 1 ) = 1 − y − 1 − y + 1 ≥ 0 (y-1)(y^{-1}-1)=1-y^{-1}-y+1\ge0 (y−1)(y−1−1)=1−y−1−y+1≥0有 1 − y − 1 ≥ y − 1 > 0 1-y^{-1}\ge y-1>0 1−y−1≥y−1>0即 y − 1 < 1 y^{-1}<1 y−1<1,推出矛盾,故 y − 1 < 1 y^{-1}<1 y−1<1,完成了一边的证明;还是用反证法,假设 y − 1 ≤ 0 y^{-1}\le0 y−1≤0,那么 − y − 1 ≥ 0 -y^{-1}\ge0 −y−1≥0,而 y > 1 > 0 y>1>0 y>1>0故 y ≥ 0 y\ge0 y≥0,根据有序与乘法的相容有 − y − 1 y = − 1 ≥ 0 -y^{-1}y=-1\ge0 −y−1y=−1≥0,两侧加上 1 1 1得到 0 > 1 0>1 0>1与 0 < 1 0<1 0<1矛盾,故 y − 1 > 0 y^{-1}>0 y−1>0。综上,证毕。
第三个命题: x ≥ y x\ge y x≥y等价于 x − y ≥ 0 x-y\ge0 x−y≥0等价于 − ( x − y ) ≤ 0 -(x-y)\le0 −(x−y)≤0等价于 − x − y ≤ 0 -x-y\le0 −x−y≤0等价于 − x ≤ − y -x\le-y −x≤−y,得证。
2) 证明, 1 > 0 , − 1 ≠ 1 1>0,-1\neq1 1>0,−1=1。
证明:用反证法,假设
1
≤
0
1\le0
1≤0,有
−
1
≥
0
-1\ge0
−1≥0,因此
1
=
(
−
1
)
(
−
1
)
≥
0
1=(-1)(-1)\ge0
1=(−1)(−1)≥0,根据
≤
\le
≤的反对称性
1
=
0
1=0
1=0,这与起初对
R
\R
R性质的规定矛盾。因此1>0,得证。
由于
1
>
0
1>0
1>0有
−
1
<
0
-1<0
−1<0,根据传递性
−
1
<
1
-1<1
−1<1故
−
1
≠
1
-1\neq1
−1=1,得证。
3) 证明, 如果 x ≤ y , a ≤ 0 x\le y,a\le0 x≤y,a≤0,那么 a ⋅ x ≥ a ⋅ y a\cdot x\ge a\cdot y a⋅x≥a⋅y。
证明:由 a ≤ 0 a\le0 a≤0得 − a ≥ 0 -a\ge0 −a≥0,由 x ≤ y x\le y x≤y得 y − x ≥ 0 y-x\ge0 y−x≥0,故 ( − a ) ( y − x ) ≥ 0 (-a)(y-x)\ge0 (−a)(y−x)≥0即 − a y ≥ − a x -ay\ge-ax −ay≥−ax,即 a x ≥ a y ax\ge ay ax≥ay。
4) 证明,如果 a ≤ b , x ≤ y a\le b,x\le y a≤b,x≤y,那么 a + x ≤ b + y a+x\le b+y a+x≤b+y并且 = = =成立当且仅当 a = b , x = y a=b,x=y a=b,x=y;再证明,如果 0 < a ≤ b , 0 < x ≤ y 0<a\le b,0<x\le y 0<a≤b,0<x≤y,那么 a x ≤ b y ax\le by ax≤by并且 = = =成立当且仅当 a = b , x = y a=b,x=y a=b,x=y。
证明:
先证
a
b
=
0
ab=0
ab=0则
a
=
0
a=0
a=0或
b
=
0
b=0
b=0。只需证当
a
b
=
0
,
b
≠
0
ab=0,b\neq0
ab=0,b=0时
a
=
0
a=0
a=0即可。由于
b
≠
0
b\neq0
b=0故
b
b
b的乘法逆元存在,有
a
=
a
⋅
1
=
a
(
b
b
−
1
)
=
(
a
b
)
b
−
1
=
0
b
−
1
=
0
a=a\cdot1=a(bb^{-1})=(ab)b^{-1}=0b^{-1}=0
a=a⋅1=a(bb−1)=(ab)b−1=0b−1=0,得证。
由 a ≤ b , x ≤ y a\le b,x\le y a≤b,x≤y得 a − b ≤ 0 ≤ y − x a-b\le0\le y-x a−b≤0≤y−x,即 a + x ≤ b + y a+x\le b+y a+x≤b+y。如果 a = b , x = y a=b,x=y a=b,x=y显然 = = =成立,现在设 a + x = b + y a+x=b+y a+x=b+y,即 a − b = y − x a-b=y-x a−b=y−x。因此有 0 ≤ y − x = a − b ≤ 0 0\le y-x=a-b\le0 0≤y−x=a−b≤0,得 y − x = a − b = 0 y-x=a-b=0 y−x=a−b=0,得证。
b y − a x = b y − a y + a y − a x = y ( b − a ) + a ( y − x ) by-ax=by-ay+ay-ax=y(b-a)+a(y-x) by−ax=by−ay+ay−ax=y(b−a)+a(y−x),由于 b − a ≥ 0 , y ≥ 0 b-a\ge0,y\ge0 b−a≥0,y≥0且 y − x ≥ 0 , a ≥ 0 y-x\ge 0,a\ge0 y−x≥0,a≥0,可得 y ( b − a ) ≥ 0 y(b-a)\ge0 y(b−a)≥0且 a ( y − x ) ≥ 0 a(y-x)\ge0 a(y−x)≥0,根据前一个命题的证明有 y ( b − a ) + a ( y − x ) ≥ 0 y(b-a)+a(y-x)\ge0 y(b−a)+a(y−x)≥0故 b y − a x ≥ 0 by-ax\ge0 by−ax≥0。如果 a = b , x = y a=b,x=y a=b,x=y显然 = = =成立,现在设 a x = b y ax=by ax=by,那么有 y ( b − a ) + a ( y − x ) = 0 y(b-a)+a(y-x)=0 y(b−a)+a(y−x)=0,根据前一个命题的证明这表示 y ( b − a ) = a ( y − x ) = 0 y(b-a)=a(y-x)=0 y(b−a)=a(y−x)=0,但由于 y > 0 , a > 0 y>0,a>0 y>0,a>0得 y ≠ 0 , a ≠ 0 y\neq0,a\neq0 y=0,a=0,所以有 b − a = y − x = 0 b-a=y-x=0 b−a=y−x=0,得证。
5) 证明,给定 x , y ∈ R x,y\in\R x,y∈R,如果对于任意的 a < x a<x a<x都能推出 a < y a<y a<y,证明, x ≤ y x\le y x≤y。
证明:证逆否命题,即证当 x ≤ y x\le y x≤y不成立时并非对任意的 a < x a<x a<x都有 a < y a<y a<y,根据逻辑的相关知识等价于证明 x > y x>y x>y时存在 a a a使得 y ≤ a < x y\le a<x y≤a<x,显然这样的 a a a是存在的例如 a = y a=y a=y。
6) 证明,对任意的 x ∈ R x\in\R x∈R,我们有 x 2 ≥ 0 x^2\ge0 x2≥0。
证明: x ≥ 0 x\ge0 x≥0时结论是显然的,现在设 x < 0 x<0 x<0,因此有 − x > 0 -x>0 −x>0,故 ( − x ) 2 = ( − x ) ( − x ) = ( − 1 ) ( x ) ( − 1 ) ( x ) = ( ( − 1 ) ( − 1 ) ) x 2 = 1 ⋅ x 2 = x 2 ≥ 0 (-x)^2=(-x)(-x)=(-1)(x)(-1)(x)=((-1)(-1))x^2=1\cdot x^2=x^2\ge0 (−x)2=(−x)(−x)=(−1)(x)(−1)(x)=((−1)(−1))x2=1⋅x2=x2≥0,得证。
7) 证明,如果 a 2 < a a^2<a a2<a,那么 0 < a < 1 0<a<1 0<a<1。
证明:由于 a > a 2 ≥ 0 a>a^2\ge0 a>a2≥0根据 > > >和 ≥ \ge ≥的定义可以得到 a > 0 a>0 a>0,因此 a ≠ 0 a\neq0 a=0,其乘法逆元存在且一定是正实数,为说明这一点用反证法,若 a − 1 ≤ 0 a^{-1}\le0 a−1≤0有 − a − 1 ≥ 0 -a^{-1}\ge0 −a−1≥0,而 a ≥ 0 a\ge0 a≥0,故根据有序与乘法的相容性 − a − 1 a = − ( a − 1 a ) = − 1 > 0 -a^{-1}a=-(a^{-1}a)=-1>0 −a−1a=−(a−1a)=−1>0,推出矛盾,故 a − 1 > 0 a^{-1}>0 a−1>0,因此在 a 2 < a a^2<a a2<a两侧乘上 a − 1 a^{-1} a−1得到 a = a ( a a − 1 ) = a 2 a − 1 < a a − 1 = 1 a=a(aa^{-1})=a^2a^{-1}<aa^{-1}=1 a=a(aa−1)=a2a−1<aa−1=1。综上有 0 < a < 1 0<a<1 0<a<1,得证。
8) 证明,如果非零实数 x x x和 y y y的符号相同,证明, ( x + y ) 2 > ( x − y ) 2 (x+y)^2>(x-y)^2 (x+y)2>(x−y)2。
证明:只需证明 4 ⋅ x y > 0 4\cdot xy>0 4⋅xy>0即可。假设 x > 0 , y > 0 x>0,y>0 x>0,y>0,则有 x y > 0 xy>0 xy>0,因此 2 ⋅ x y = x y + x y > 0 2\cdot xy=xy+xy>0 2⋅xy=xy+xy>0, 4 ⋅ x y = 2 ⋅ x y + 2 ⋅ x y > 0 4\cdot xy=2\cdot xy+2\cdot xy>0 4⋅xy=2⋅xy+2⋅xy>0。假设 x < 0 , y < 0 x<0,y<0 x<0,y<0,那么有 − x > 0 , − y > 0 -x>0,-y>0 −x>0,−y>0,故 x y = ( − x ) ( − y ) > 0 xy=(-x)(-y)>0 xy=(−x)(−y)>0,同理可得 4 ⋅ x y > 0 4\cdot xy>0 4⋅xy>0。综上有 4 ⋅ x y > 0 4\cdot xy>0 4⋅xy>0,得证。
有理数的性质
1) 证明,利用 R \R R中的 n n n的定义,我们有 n ⋅ x = n x n\cdot x=nx n⋅x=nx。
证明:注意到上式中,等号左边是 R \R R上的乘法运算,等号右边是 R \R R上的加法运算的简便写法。由于 n = ι ( n ) n=ι(n) n=ι(n),这里等号左边是 R \R R中的元素,等号右边是 Z \Z Z中的元素,所以 n = 1 + ⋅ ⋅ ⋅ + 1 n=1+\cdot\cdot\cdot+1 n=1+⋅⋅⋅+1(共n个),有 n ⋅ x = ( 1 + ⋅ ⋅ ⋅ + 1 ) ⋅ x = x + ⋅ ⋅ ⋅ + x n\cdot x=(1+\cdot\cdot\cdot+1)\cdot x=x+\cdot\cdot\cdot+x n⋅x=(1+⋅⋅⋅+1)⋅x=x+⋅⋅⋅+x(共n个) = n x =nx =nx,第二个等号是因为乘法分配律,第三个等号是因为加法简便写法的定义。
2) 证明,对于任意的 a < b a<b a<b, ( a , b ) (a,b) (a,b)有无限多个元素。
证明:先证明 0 < 1 2 < 1 0<\frac{1}{2}<1 0<21<1。由于 1 2 = ι ( 1 ) ( ι ( 2 ) ) − 1 \frac{1}{2}=ι(1)(ι(2))^{-1} 21=ι(1)(ι(2))−1,不难得到 ι ( 1 ) = 1 > 0 ι(1)=1>0 ι(1)=1>0且 ι ( 2 ) = 1 + 1 > 0 ι(2)=1+1>0 ι(2)=1+1>0故 ( ι ( 2 ) ) − 1 > 0 (ι(2))^{-1}>0 (ι(2))−1>0(见之前某道题目的过程)。因此 1 2 = ι ( 1 ) ( ι ( 2 ) ) − 1 > 0 \frac{1}{2}=ι(1)(ι(2))^{-1}>0 21=ι(1)(ι(2))−1>0。另外,由于 0 < 1 0<1 0<1,有 1 = 0 + 1 < 1 + 1 1=0+1<1+1 1=0+1<1+1即 ι ( 1 ) < ι ( 2 ) = 1 ⋅ ι ( 2 ) = ι ( 1 ) ι ( 2 ) ι(1)<ι(2)=1\cdotι(2)=ι(1)ι(2) ι(1)<ι(2)=1⋅ι(2)=ι(1)ι(2)在两侧乘上 ι ( 2 ) ι(2) ι(2)的乘法逆元,有 1 2 = ι ( 1 ) ( ι ( 2 ) ) − 1 < ι ( 1 ) = 1 \frac{1}{2}=ι(1)(ι(2))^{-1}<ι(1)=1 21=ι(1)(ι(2))−1<ι(1)=1,得证。
下面证明题目中的命题,由于 a < b a<b a<b有 a 2 < b 2 \frac{a}{2}<\frac{b}{2} 2a<2b,在两侧加上 a 2 \frac{a}{2} 2a或 b 2 \frac{b}{2} 2b得到 a < 1 2 ( a + b ) < b a<\frac{1}{2}(a+b)<b a<21(a+b)<b。用反证法,假设 ( a , b ) (a,b) (a,b)有有限个元素,用 ∣ ( a , b ) ∣ |(a,b)| ∣(a,b)∣表示 ( a , b ) (a,b) (a,b)中的元素个数,那么 ∣ ( a , b ) ∣ = ∣ ( a , 1 2 ( a + b ) ) ∣ + 1 + ∣ ( 1 2 ( a + b ) , b ) ∣ ≥ 1 = k 1 |(a,b)|=|(a,\frac{1}{2}(a+b))|+1+|(\frac{1}{2}(a+b),b)|\ge1=k_1 ∣(a,b)∣=∣(a,21(a+b))∣+1+∣(21(a+b),b)∣≥1=k1(最后一个不等号是因为元素的个数都是非负数并且利用了之前证明过的不等式可加性的推广)。注意到这个式子与 a , b a,b a,b的具体选择无关,因此用 1 2 ( a + b ) \frac{1}{2}(a+b) 21(a+b)替换掉 a a a或 b b b之后可以得到 ∣ ( a , 1 2 ( a + b ) ) ∣ > k 1 |(a,\frac{1}{2}(a+b))|>k_1 ∣(a,21(a+b))∣>k1且 ∣ ( 1 2 ( a + b ) , b ) ∣ > k 1 |(\frac{1}{2}(a+b),b)|>k_1 ∣(21(a+b),b)∣>k1,因此有 ∣ ( a , b ) ∣ = ∣ ( a , 1 2 ( a + b ) ) ∣ + 1 + ∣ ( 1 2 ( a + b ) , b ) ∣ ≥ k 1 + 1 + k 1 = 2 k 1 + 1 = 3 = k 2 |(a,b)|=|(a,\frac{1}{2}(a+b))|+1+|(\frac{1}{2}(a+b),b)|\ge k_1+1+k_1=2k_1+1=3=k_2 ∣(a,b)∣=∣(a,21(a+b))∣+1+∣(21(a+b),b)∣≥k1+1+k1=2k1+1=3=k2。据此定义 k n = 2 k n − 1 + 1 k_n=2k_{n-1}+1 kn=2kn−1+1,由于 ∣ ( a , b ) ∣ > k 1 |(a,b)|>k_1 ∣(a,b)∣>k1且当 ∣ ( a , b ) ∣ > k n − 1 |(a,b)|>k_{n-1} ∣(a,b)∣>kn−1时必有 ∣ ( a , b ) ∣ > k n |(a,b)|>k_n ∣(a,b)∣>kn,由数学归纳法 ∣ ( a , b ) ∣ > k n |(a,b)|>k_n ∣(a,b)∣>kn对于所有的正整数 n n n成立,不难求出其中 k n = 2 n − 1 k_n=2^n-1 kn=2n−1。显然对任意的整数总是存在更大的整数(例如将该整数 + 1 +1 +1得到的整数),因此存在整数 m > ∣ ( a , b ) ∣ m>|(a,b)| m>∣(a,b)∣,因此 k m = 2 m − 1 ≥ m > ∣ ( a , b ) ∣ k_m=2^m-1\ge m>|(a,b)| km=2m−1≥m>∣(a,b)∣,与 ∣ ( a , b ) ∣ < k m |(a,b)|<k_m ∣(a,b)∣<km矛盾。因此 ∣ ( a , b ) ∣ |(a,b)| ∣(a,b)∣只能拥有无限多个元素,得证。
3) 如果 R \R R中存在元素 o > 0 o>0 o>0,使得对于任意的 x > 0 x>0 x>0,我们都有 o < x o<x o<x,我们就称 o o o是无穷小元。证明, R \R R中没有无穷小元。
证明:用反证法,假设 R \R R存在无穷小元 o > 0 o>0 o>0,显然 R \R R中也存在着 1 2 o > 0 \frac{1}{2}o>0 21o>0,但是根据上一题中的分析 1 2 o < o \frac{1}{2}o<o 21o<o,推出矛盾,因此 R \R R中不存在无穷小元,得证。
实数的基本性质
1) 证明, x ≤ y x\le y x≤y和 y < z y<z y<z可以推出 x < z x<z x<z; x < y x<y x<y和 y ≤ z y\le z y≤z可以推出 x < z x<z x<z。
证明:由 y < z y<z y<z有 y ≤ z y\le z y≤z,而 x ≤ y x\le y x≤y,根据 ≤ \le ≤的传递性有 x ≤ z x\le z x≤z。下面说明 x ≠ z x\neq z x=z,用反证法,假设 x = z x=z x=z,有 z = x ≤ y z=x\le y z=x≤y,这与 z > y z>y z>y矛盾,故 x ≠ z x\neq z x=z,根据 < < <的定义这等价于 x < z x<z x<z,完成了第一个命题的证明。第二个命题的证明是类似的。
2) 证明,
R
\R
R的有限子集都有唯一的最大元和唯一的最小元(我们约定集合中的两个元素是不同的)。特别地,如果
A
⊂
R
A\sub\R
A⊂R是有限子集,
n
=
∣
A
∣
n=|A|
n=∣A∣,那么可以将
A
A
A中的元素排序,使得
A
=
{
a
1
,
⋅
⋅
⋅
,
a
n
}
,
a
1
<
⋅
⋅
⋅
<
a
n
A=\{a_1,\cdot\cdot\cdot,a_n\},a_1<\cdot\cdot\cdot<a_n
A={a1,⋅⋅⋅,an},a1<⋅⋅⋅<an
证明:
a
a
a是
A
A
A的最大元当且仅当对于每一个
x
∈
A
x\in A
x∈A都有
x
≤
a
x\le a
x≤a,最小元的定义是对偶的。
对 n n n的大小进行归纳证明。容易发现 A = { a } A=\{a\} A={a}有最大元和最小元 a a a,因为 a ≤ a a\le a a≤a且 a ≥ a a\ge a a≥a;设 k k k是一个正整数且 k > 1 k>1 k>1,假设对于所有的 ∣ A ∣ < k |A|<k ∣A∣<k, A A A的最大元和最小元都存在,那么考虑 ∣ A ∣ = k |A|=k ∣A∣=k,设 a ∈ A , A ′ = A − { a } a\in A,A'=A-\{a\} a∈A,A′=A−{a},则 ∣ A ′ ∣ = k − 1 |A'|=k-1 ∣A′∣=k−1,符合归纳假设,所以 A ′ A' A′存在的最大元和最小元,分别记为 m a x A ′ , m i n A ′ maxA',minA' maxA′,minA′,且 m i n A ′ ≤ m a x A ′ minA'\le maxA' minA′≤maxA′。分三种情况讨论:
1 o 1^o 1o m i n A ′ ≤ a ≤ m a x A ′ minA'\le a\le maxA' minA′≤a≤maxA′,而对于每一个 a ′ ∈ A ′ a'\in A' a′∈A′,根据最大最小元的定义,都有 m i n A ′ ≤ a ′ ≤ m a x A ′ minA'\le a'\le maxA' minA′≤a′≤maxA′。因此 m i n A ′ minA' minA′和 m a x A ′ maxA' maxA′就是 A A A的最小元和最大元。
2 o 2^o 2o a < m i n A ′ a<minA' a<minA′,对于每一个 a ′ ∈ A ′ a'\in A' a′∈A′,都有 a < m i n A ′ ≤ a ′ a<minA'\le a' a<minA′≤a′,而又有 a ≤ a a\le a a≤a,因此根据最小元的定义有 a a a是 A A A的最小元。而 a < m i n A ′ ≤ m a x A ′ a<minA'\le maxA' a<minA′≤maxA′且对每一个 a ′ ∈ A ′ a'\in A' a′∈A′都有 a ′ ≤ m a x A ′ a'\le maxA' a′≤maxA′,因此 m a x A ′ maxA' maxA′也是 A A A的最大元。
3 o 3^o 3o a > m a x A ′ a>maxA' a>maxA′,这与第二种情况是类似的。
综上,可以得到所有元素个数等于某个正整数的集合都存在着最小元和最大元,也即 R \R R的有限子集都有最大最小元,下面证明最大元和最小元都是唯一的。假设 a , a ′ a,a' a,a′是 A A A的最大元,那么根据定义有 a ≤ a ′ , a ′ ≤ a a\le a',a'\le a a≤a′,a′≤a,因此 a = a ′ a=a' a=a′,最小元的情况是类似的,得证。
注意到,要将 A A A排序,只要其任意子集都有唯一的最小元即可,因为将 m i n A minA minA置于排序序列的第一个位置,将 A − { m i n A } A-\{minA\} A−{minA}的排序序列接在后面就可以递归地解决这个问题。
3) 证明,
x
1
,
⋅
⋅
⋅
,
x
n
x_1,\cdot\cdot\cdot,x_n
x1,⋅⋅⋅,xn和
y
1
,
⋅
⋅
⋅
,
y
n
y_1,\cdot\cdot\cdot,y_n
y1,⋅⋅⋅,yn是实数,对于任意的指标
1
≤
i
≤
n
,
x
i
≤
y
i
1\le i\le n,x_i\le y_i
1≤i≤n,xi≤yi,那么
x
1
+
⋅
⋅
⋅
+
x
n
≤
y
1
+
⋅
⋅
⋅
+
y
n
x_1+\cdot\cdot\cdot+x_n\le y_1+\cdot\cdot\cdot+y_n
x1+⋅⋅⋅+xn≤y1+⋅⋅⋅+yn
上面的不等式取等号当且仅当对所有的
i
i
i,我们都有
x
i
=
y
i
x_i=y_i
xi=yi。
证明:对 n n n进行数学归纳法。已知这个命题对于 n ≤ 2 n\le2 n≤2的情形成立,设 k > 2 k>2 k>2是一个正整数,假设对于所有的 n < k n<k n<k命题都成立,那么当 n = k n=k n=k时,有 x 1 + ⋅ ⋅ ⋅ + x k − 1 ≤ y 1 + ⋅ ⋅ ⋅ + y k − 1 , x k ≤ y k x_1+\cdot\cdot\cdot+x_{k-1}\le y_1+\cdot\cdot\cdot+y_{k-1},x_k\le y_k x1+⋅⋅⋅+xk−1≤y1+⋅⋅⋅+yk−1,xk≤yk,由于命题对于 n = 2 n=2 n=2的情形成立有 ( x 1 + ⋅ ⋅ ⋅ + x k − 1 ) + x k ≤ ( y 1 + ⋅ ⋅ ⋅ + y k − 1 ) + y k (x_1+\cdot\cdot\cdot+x_{k-1})+x_k\le(y_1+\cdot\cdot\cdot+y_{k-1})+y_k (x1+⋅⋅⋅+xk−1)+xk≤(y1+⋅⋅⋅+yk−1)+yk,取等当且仅当 x 1 + ⋅ ⋅ ⋅ + x k − 1 = y 1 + ⋅ ⋅ ⋅ + y k − 1 x_1+\cdot\cdot\cdot+x_{k-1}=y_1+\cdot\cdot\cdot+y_{k-1} x1+⋅⋅⋅+xk−1=y1+⋅⋅⋅+yk−1且 x k = y k x_k=y_k xk=yk,根据归纳假设前一个等号成立等价于 x 1 = y 1 , ⋅ ⋅ ⋅ , x k − 1 = y k − 1 x_1=y_1,\cdot\cdot\cdot,x_{k-1}=y_{k-1} x1=y1,⋅⋅⋅,xk−1=yk−1,因此命题对于 n = k n=k n=k也成立。根据数学归纳法,得证。
(重要的结论)确界原理
确界原理:假设 X ⊂ R X\sub\R X⊂R是非空的并且 X X X有上界。令 M ‾ = { M ‾ ∈ R ∣ M ‾ 是 X 的上界 } \mathcal{\overline{M}}=\{\overline{M}\in\R|\overline{M}是X的上界\} M={M∈R∣M是X的上界},则 M ‾ \mathcal{\overline{M}} M有最小元,即存在 M 0 ‾ ∈ M ‾ \overline{M_0}\in\mathcal{\overline{M}} M0∈M,都有 M 0 ‾ ≤ M ‾ \overline{M_0}\le \mathcal{\overline{M}} M0≤M。我们称 M 0 ‾ \overline{M_0} M0为 X X X的上确界,记作 sup X \sup{X} supX。对于下确界有类似的定义和结论。
证明:为了避免可能存在的麻烦,先证明对于整数 m , n m,n m,n, m > n m>n m>n当且仅当 m ≥ n + 1 m\ge n+1 m≥n+1。设 m > n m>n m>n,令 ι ι ι表示在构造 R \R R中的有理数时用到的那个映射,由于 m , n m,n m,n是整数故存在 m , n ∈ Z m,n\in\Z m,n∈Z使得 m = ι ( m ) , n = ι ( n ) m=ι(m),n=ι(n) m=ι(m),n=ι(n)。用反证法,假设 m < n + 1 m<n+1 m<n+1,那么有 n < m < n + 1 n<m<n+1 n<m<n+1,注意到 ι ι ι具有单调性,因此对于所有的整数 p ≤ n p\le n p≤n,都有 p < m p<m p<m,故 ι ( p ) < ι ( m ) ι(p)<ι(m) ι(p)<ι(m)即 ι ( p ) ≠ ι ( m ) ι(p)\neqι(m) ι(p)=ι(m),同理当 p ≥ n + 1 p\ge n+1 p≥n+1时也总是有 ι ( p ) ≠ ι ( m ) ι(p)\neqι(m) ι(p)=ι(m),因此不存在 p ∈ Z p\in\Z p∈Z使得 ι ( p ) = ι ( m ) ι(p)=ι(m) ι(p)=ι(m),因而 m m m不是整数,推出矛盾,因此 m ≥ n + 1 m\ge n+1 m≥n+1,完成了一个方向的证明。另一个方向是显然的,因为 m ≥ n + 1 > n m\ge n+1>n m≥n+1>n故 m > n m>n m>n。综上,得证。
我们将通过区间套公理证明确界原理,证明的思路是在 X X X和 M ‾ \mathcal{\overline{M}} M中各取一列数,将两个数作为区间的左右端点得到一列区间。如果这两列数在充分地接近,这一列区间可以成为一个区间套,可以证明区间套中至多存在一个元素,而区间套公理保证至少存在一个元素,而这个元素就是我们寻求的上确界。
设 x ∈ X , M ‾ ∈ M ‾ x\in X,\overline{M}\in\mathcal{\overline{M}} x∈X,M∈M, n > 0 n>0 n>0是一个正整数,那么 1 2 n \frac{1}{2^n} 2n1也是一个正实数(因为其乘法逆元是正的),根据 A c h i m e d e s Achimedes Achimedes公理存在正整数 k k k使得 k ⋅ 1 2 n > M ‾ − x k\cdot\frac{1}{2^n}>\overline{M}-x k⋅2n1>M−x,即 x + k 2 n > M ‾ x+\frac{k}{2^n}>\overline{M} x+2nk>M,因此存在 k k k使得 x + k 2 n ∈ M ‾ x+\frac{k}{2^n}\in\mathcal{\overline{M}} x+2nk∈M,令 k n k_n kn为拥有这个性质的最小的 k k k(这样的最小值是存在的因为只有有限个连续整数不满足这个性质,取这些整数最大值 + 1 +1 +1就是所求的整数),定义 I n = [ x + k n − 1 2 n , x + k n 2 n ] I_n=[x+\frac{k_n-1}{2^n},x+\frac{k_n}{2^n}] In=[x+2nkn−1,x+2nkn]。对于每一个 n n n都存在区间 I n I_n In因而我们得到了一列区间。记 a n = x + k n − 1 2 n , b n = x + k n 2 n a_n=x+\frac{k_n-1}{2^n},b_n=x+\frac{k_n}{2^n} an=x+2nkn−1,bn=x+2nkn
要应用我们先前的分析,就必须要 I n I_n In总是既包含着 M ‾ \mathcal{\overline{M}} M中的元素又包含着 X X X中的元素,再证明这的确是一个区间套。
I n ∩ M ‾ I_n\cap \mathcal{\overline{M}} In∩M是显然的,下证 I n ∩ X ≠ ∅ I_n\cap X\neq\empty In∩X=∅。根据 k n k_n kn的定义, a n ∉ M ‾ a_n\notin\mathcal{\overline{M}} an∈/M即 a n a_n an不是 X X X的上界,所以存在着 x 0 ∈ X x_0\in X x0∈X使得 x 0 > a n x_0>a_n x0>an,而由于 b n b_n bn是 X X X的一个上界,一定有 x 0 ≤ b n x_0\le b_n x0≤bn,所以 x 0 ∈ [ a n , b n ] = I n x_0\in[a_n,b_n]=I_n x0∈[an,bn]=In。所以 x 0 ∈ I n ∩ X x_0\in I_n\cap X x0∈In∩X因而 I n ∩ X ≠ ∅ I_n\cap X\neq\empty In∩X=∅,得证。
下证 I n ⊃ I n + 1 I_n⊃I_{n+1} In⊃In+1对于每一个正整数 n n n都成立。只需证 a n ≤ a n + 1 < b n + 1 ≤ b n a_n\le a_{n+1}<b_{n+1}\le b_n an≤an+1<bn+1≤bn。先证 b n ≥ b n + 1 b_n\ge b_{n+1} bn≥bn+1,即证 b n ≥ a n + 1 + 1 2 n + 1 b_n\ge a_{n+1}+\frac{1}{2^{n+1}} bn≥an+1+2n+11,由于 a n + 1 a_{n+1} an+1不是 X X X的上界,所以存在着 x 0 ∈ X x_0\in X x0∈X使得 b n ≥ x 0 > a n + 1 b_n\ge x_0> a_{n+1} bn≥x0>an+1因此 b n > a n + 1 b_n>a_{n+1} bn>an+1,注意到 b n b_n bn与 a n + 1 a_{n+1} an+1的差只能以 1 2 n + 1 \frac{1}{2^{n+1}} 2n+11为单位,形式地说 x + k n 2 n = b n > a n + 1 = x + k n + 1 − 1 2 n + 1 x+\frac{k_n}{2^n}=b_n>a_{n+1}=x+\frac{k_{n+1-1}}{2^{n+1}} x+2nkn=bn>an+1=x+2n+1kn+1−1因而 2 k n > k n + 1 − 1 2k_n>k_{n+1}-1 2kn>kn+1−1,由于 k k k都是整数,有 2 k n ≥ k n + 1 2k_n\ge k_{n+1} 2kn≥kn+1,故 b n − a n + 1 = k n 2 n − k n + 1 − 1 2 n + 1 = 2 k n − k n + 1 + 1 2 n + 1 ≥ 1 2 n + 1 b_n-a_{n+1}=\frac{k_n}{2^n}-\frac{k_{n+1}-1}{2^{n+1}}=\frac{2k_n-k_{n+1}+1}{2^{n+1}}\ge\frac{1}{2^{n+1}} bn−an+1=2nkn−2n+1kn+1−1=2n+12kn−kn+1+1≥2n+11,得证。再证 a n ≤ a n + 1 a_n\le a_{n+1} an≤an+1,即证 a n ≤ b n + 1 − 1 2 n + 1 a_n\le b_{n+1}-\frac{1}{2^{n+1}} an≤bn+1−2n+11,由于 a n a_n an不是 X X X的上界,存在着 x 0 ′ ∈ X x_0'\in X x0′∈X使得 b n + 1 ≥ X 0 ′ > a n b_{n+1}\ge X_0'>a_n bn+1≥X0′>an,注意到 b n + 1 b_{n+1} bn+1和 a n a_n an的差只能以 1 2 n + 1 \frac{1}{2^{n+1}} 2n+11为单位,得证。综上,有 I 1 ⊃ ⋅ ⋅ ⋅ ⊃ I n ⊃ ⋅ ⋅ ⋅ I_1⊃\cdot\cdot\cdot⊃I_n⊃\cdot\cdot\cdot I1⊃⋅⋅⋅⊃In⊃⋅⋅⋅,得到了一个区间套。
根据区间套公理有 ⋃ n ∈ Z > 0 I n ≠ ∅ \bigcup_{n\in\Z_{>0}}{I_n}\neq\empty ⋃n∈Z>0In=∅,因此存在 M 0 ∈ ⋃ n ∈ Z > 0 I n M_0\in\bigcup_{n\in\Z_{>0}}{I_n} M0∈⋃n∈Z>0In。假设 M , M ′ ∈ ⋃ n ∈ Z > 0 I n M,M'\in\bigcup_{n\in\Z_{>0}}{I_n} M,M′∈⋃n∈Z>0In,就有 M , M ′ ∈ I n M,M'\in I_n M,M′∈In对于所有的正整数 n n n成立。因此 a n ≤ M ≤ b n , a n ≤ M ′ ≤ b n a_n\le M\le b_n,a_n\le M'\le b_n an≤M≤bn,an≤M′≤bn,有 a n − b n ≤ M − M ′ ≤ b n − a n a_n-b_n\le M-M'\le b_n-a_n an−bn≤M−M′≤bn−an,即 ∣ M − M ′ ∣ ≤ b n − a n = 1 2 n |M-M'|\le b_n-a_n=\frac{1}{2^n} ∣M−M′∣≤bn−an=2n1对所有的正整数 n n n成立。假设 ∣ M − M ′ ∣ > 0 |M-M'|>0 ∣M−M′∣>0,总存在较大的 n n n使得 1 2 n < ∣ M − M ′ ∣ \frac{1}{2^n}<|M-M'| 2n1<∣M−M′∣(这是因为 { 2 n ∣ n ∈ Z > 0 } \{2^n|n\in\Z_{>0}\} {2n∣n∈Z>0}是无界的,这一点可以通过之前提到的不等式 2 n > n 2^n>n 2n>n证明,所以也存在 2 n > ∣ M − M ′ ∣ − 1 2^n>|M-M'|^{-1} 2n>∣M−M′∣−1),推出矛盾,所以 ∣ M − M ′ ∣ ≤ 0 |M-M'|\le0 ∣M−M′∣≤0,而绝对值的正定性又有 ∣ M − M ′ ∣ ≥ 0 |M-M'|\ge0 ∣M−M′∣≥0,故 ∣ M − M ′ ∣ = 0 |M-M'|=0 ∣M−M′∣=0即 M = M ′ M=M' M=M′,因此 ⋃ n ∈ Z > 0 I n \bigcup_{n\in\Z_{>0}}{I_n} ⋃n∈Z>0In中只存在唯一的元素,记为 M 0 ‾ \overline{M_0} M0。
最后证明 M 0 ‾ \overline{M_0} M0是 X X X的上确界。先证明 M 0 ‾ \overline{M_0} M0是 X X X的上界,设 x ∈ X x\in X x∈X,要证明 x ≤ M 0 ‾ x\le\overline{M_0} x≤M0,只需证明当 x ≠ M 0 ‾ x\neq\overline{M_0} x=M0时总有 x < M 0 ‾ x<\overline{M_0} x<M0。由于 x ≠ M 0 ‾ x\neq\overline{M_0} x=M0,有 x ∉ ⋃ n ∈ Z > 0 I n x\notin\bigcup_{n\in\Z_{>0}}{I_n} x∈/⋃n∈Z>0In,故存在正整数 n 0 n_0 n0使得 x ∉ I n 0 x\notin I_{n_0} x∈/In0,由于 x ≤ b n 0 x\le b_{n_0} x≤bn0,因此一定有 x < a n 0 x<a_{n_0} x<an0(否则 x ∈ I n 0 x\in I_{n_0} x∈In0),而 M 0 ‾ ∈ I n 0 \overline{M_0}\in I_{n_0} M0∈In0即 M 0 ‾ ≥ a n 0 \overline{M_0}\ge a_{n_0} M0≥an0,因此 x < a n 0 ≤ M 0 ‾ x<a_{n_0}\le\overline{M_0} x<an0≤M0,得 x < M 0 ‾ x<\overline{M_0} x<M0,得证。再证明 M 0 ‾ \overline{M_0} M0不大于每一个 X X X的上界,设 M M M是 X X X的一个上界,同样地只需证 M ≠ M 0 ‾ M\neq\overline{M_0} M=M0时 M > M 0 ‾ M>\overline{M_0} M>M0,同理存在某个 I n 0 I_{n_0} In0使得 M ∉ I n 0 M\notin I_{n_0} M∈/In0,由于 M > a n 0 M>a_{n_0} M>an0(否则 a n 0 a_{n_0} an0就会成为 X X X的一个上界)因此一定有 M > b n 0 ≥ M 0 ‾ M>b_{n_0}\ge\overline{M_0} M>bn0≥M0,因此 M > M 0 M>M_0 M>M0,得证。所以 M 0 ‾ \overline{M_0} M0是 X X X的上确界, 证毕!
距离空间的性质
证明,有理数和无理数在实数中都是稠密的。
证明:先证明有理数的和还是有理数,由 p q + r s = p s + r q q s \frac{p}{q}+\frac{r}{s}=\frac{ps+rq}{qs} qp+sr=qsps+rq显然。
先证关于有理数的部分。假设 x ∈ R x\in\R x∈R,下面证明对于任意的 ε > 0 ε>0 ε>0,都存在着有理数 q q q,使得 ∣ q − x ∣ < ε |q-x|<ε ∣q−x∣<ε。根据 A c h i m e d e s Achimedes Achimedes公理,存在正整数 m m m使得 m ⋅ 1 = m > ∣ x ∣ m\cdot1=m>|x| m⋅1=m>∣x∣,因此有 − m < x < m -m<x<m −m<x<m。现在定义 l 1 = − m , r 1 = m l_1=-m,r_1=m l1=−m,r1=m,可以递推地定义 { l n } \{l_n\} {ln}和 { r n } \{r_n\} {rn},当 l n − 1 + r n − 1 2 ≤ x \frac{l_{n-1}+r_{n-1}}{2}\le x 2ln−1+rn−1≤x时,定义 ( l n , r n ) = ( l n − 1 + r n − 1 2 , r n − 1 ) (l_n,r_n)=(\frac{l_{n-1}+r_{n-1}}{2},r_{n-1}) (ln,rn)=(2ln−1+rn−1,rn−1),否则定义 ( l n , r n ) = ( l n − 1 , l n − 1 + r n − 1 2 ) (l_n,r_n)=(l_{n-1},\frac{l_{n-1}+r_{n-1}}{2}) (ln,rn)=(ln−1,2ln−1+rn−1)。显然 l n ≤ x ≤ r n , ∣ r n − l n ∣ = m 2 n − 2 l_n\le x\le r_n,|r_n-l_n|=\frac{m}{2^{n-2}} ln≤x≤rn,∣rn−ln∣=2n−2m,因此有 ∣ x − l n ∣ ≤ ∣ l n − r n ∣ − ∣ x − r n ∣ ≤ ∣ l n − r n ∣ = m 2 n − 2 |x-l_n|\le|l_n-r_n|-|x-r_n|\le|l_n-r_n|=\frac{m}{2^{n-2}} ∣x−ln∣≤∣ln−rn∣−∣x−rn∣≤∣ln−rn∣=2n−2m,而根据定义 l n l_n ln是由一个有理数经过有限次加法和乘 1 2 \frac{1}{2} 21之后得到的,容易证明 l n l_n ln是一个有理数。而 m 2 n − 2 = 4 m 2 n < 4 m n \frac{m}{2^{n-2}}=\frac{4m}{2^n}<\frac{4m}{n} 2n−2m=2n4m<n4m。因此对于任意的 ε > 0 ε>0 ε>0,只要取 n > 4 m ε n>4mε n>4mε就有 ∣ x − l n ∣ < ε |x-l_n|<ε ∣x−ln∣<ε成立,而 A c h i m e d e s Achimedes Achimedes公理保证这样的 n n n是存在的,得证。
下面证明关于无理数的部分。首先证明无理数是存在的,即存在 r ∈ R r\in\R r∈R且 r r r不是有理数。考虑集合 A = { x ∈ R ∣ x 2 ≤ 2 } A=\{x\in\R|x^2\le 2\} A={x∈R∣x2≤2},显然 A A A有上界,例如 2 2 2是 A A A的一个上界(否则存在 x 0 > 2 x_0>2 x0>2且 x 0 2 ≤ 2 x_0^2\le 2 x02≤2,矛盾),因此 A A A的上确界 sup A \sup A supA存在,记为 2 \sqrt{2} 2,下面将证明 2 \sqrt{2} 2不是一个有理数。
先证明 2 2 = 2 \sqrt{2}^2=2 22=2。假设 2 2 > 2 \sqrt{2}^2>2 22>2,根据上确界的定义对于任意的正数 ε < 2 ε<\sqrt{2} ε<2,都存在着 a ∈ A a\in A a∈A使得 a > 2 − ε a>\sqrt{2}-ε a>2−ε,故 2 ≥ a 2 > 2 2 − 2 2 ε + ε 2 2\ge a^2>\sqrt{2}^2-2\sqrt{2}ε+ε^2 2≥a2>22−22ε+ε2即 ε 2 − 2 2 ε + ( 2 2 − 2 ) < 0 ε^2-2\sqrt{2}ε+(\sqrt{2}^2-2)<0 ε2−22ε+(22−2)<0对于所有的 0 < ε < 2 0<ε<\sqrt{2} 0<ε<2成立,因此有 2 2 − d 2 < ε < 2 2 + d 2 \frac{2\sqrt{2}-d}{2}<ε<\frac{2\sqrt{2}+d}{2} 222−d<ε<222+d,其中 d > 0 , d 2 = ( 2 2 ) 2 − 4 ( 2 2 − 2 ) = 8 d>0,d^2=(2\sqrt{2})^2-4(\sqrt{2}^2-2)=8 d>0,d2=(22)2−4(22−2)=8,那么有 ( 2 2 ) 2 = 4 2 2 > 8 = d 2 (2\sqrt{2})^2=4\sqrt{2}^2>8=d^2 (22)2=422>8=d2故 2 2 > d 2\sqrt{2}>d 22>d,因而当 0 < ε ≤ 2 − d 2 0<ε\le \sqrt{2}-\frac{d}{2} 0<ε≤2−2d时不存在这样的 a a a,推出矛盾;再假设 2 2 < 2 \sqrt{2}^2<2 22<2,设 ε > 0 ε>0 ε>0,根据上界的定义显然有 ( 2 + ε ) 2 > 2 (\sqrt{2}+ε)^2>2 (2+ε)2>2,即 ε 2 + 2 2 ε + 2 2 − 2 > 0 ε^2+2\sqrt{2}ε+\sqrt{2}^2-2>0 ε2+22ε+22−2>0,类似的可以推出在 0 0 0的附近存在着使得上述不等式无法成立的 ε ε ε,推出矛盾。综上,有 2 2 = 2 \sqrt{2}^2=2 22=2。
下面证明 2 \sqrt{2} 2不是有理数。用反证法,假设存在互素的正整数 p , q p,q p,q,使得 2 = p q \sqrt{2}=\frac{p}{q} 2=qp,有 2 q 2 = p 2 2q^2=p^2 2q2=p2,因此有等号左边是一个偶数,因此 p 2 p^2 p2也是一个偶数,则 p p p是偶数,因此 4 4 4是 p 2 p^2 p2的因子,故 4 4 4是 2 q 2 2q^2 2q2的一个因子,即 q 2 q^2 q2是一个偶数,所以 q q q是偶数,可得 p , q p,q p,q互素,因此不存在互素的正整数 p , q p,q p,q使得 p q = 2 \frac{p}{q}=\sqrt{2} qp=2因而也不存在正整数 m , n m,n m,n使得 m n = 2 \frac{m}{n}=\sqrt{2} nm=2(否则分子分母同时约掉 g c d ( m , n ) gcd(m,n) gcd(m,n)推出矛盾)。因此 2 \sqrt{2} 2是不是有理数,因而无理数是存在的。
下面证明无理数在 R \R R中稠密。设 x ∈ R , ε > 0 x\in\R,ε>0 x∈R,ε>0,取第一部分中构造的 l n l_n ln和 r n r_n rn。令 l n ′ = l n − 2 n l'_n=l_n-\frac{\sqrt{2}}{n} ln′=ln−n2,由于 l n l_n ln是个有理数,一定有 l n ′ l'_n ln′是无理数(否则可以推出 2 \sqrt{2} 2是有理数)。因此总有 l n ′ < l n ≤ x ≤ r n l'_n<l_n\le x\le r_n ln′<ln≤x≤rn,而 ∣ x − l n ′ ∣ ≤ ∣ x − l n ∣ + ∣ l n − l n ′ ∣ ≤ 4 m 2 n + 2 n < 4 m + 2 n < ε |x-l'_n|\le|x-l_n|+|l_n-l'_n|\le \frac{4m}{2^n}+\frac{\sqrt{2}}{n}<\frac{4m+\sqrt{2}}{n}<ε ∣x−ln′∣≤∣x−ln∣+∣ln−ln′∣≤2n4m+n2<n4m+2<ε当 n > ( 4 m + 2 ) ε n>\frac{(4m+\sqrt{2})}{ε} n>ε(4m+2)成立, A c h i m e d e s Achimedes Achimedes公理保证这样的 n n n是存在的,因此无理数也在 R \R R中稠密,得证。