(6)二分查找及其应用场景

本文详细解读了二分查找原理、常见变体及其实战场景,包括数组查找、IP地址定位等。涉及复杂度分析、内存优化和不同查找需求的实现。

数据结构&算法模块总结

1.传统二分查找模板问题


public int bsearch(int[] a, int n, int value) {
    int low = 0;
    int high = n - 1;

    while (low <= high) {
        int mid = (low + high) / 2;
        if (a[mid] == value) {
            return mid;
        } else if (a[mid] < value) {
            low = mid + 1;
        } else {
            high = mid - 1;
        }
    }
    return -1;
}
可能出现的三种问题:
  • 循环退出条件不能写成low < high,否则左右边界缩小在一起时找不到mid
  • mid计算溢出:在mid=(low+high)/2,如果low和high⽐较⼤的话,两者之和就有可能会溢出。改进方式: l ow+(high-low)/2,性能更优方式: low+((high-low)>>1)
  • low和hign更新:low=mid+1,high=mid-1, 不能写成low=mid或high=mid,否则死循环

2.四种二分查找变体


(1)查找第一个值等于给定值的元素

(2)查找最后一个值等于给定值的元素

(3)查找第一个大于等于给定值的元素

(4)查找最后一个小于等于给定值的元素

3.二分查找实现场景


(1)如何在1000万个整数中快速查找某个整数?

    设内存限制是100MB,每个数据⼤⼩是8字节,最简单的办法就是将数据存储在数组中,内存占⽤差不多是80MB,符合内存的限制。
    可以先对这1000万数据从⼩到⼤排序,然后再利⽤⼆分查找算法,就可以快速地查找想要的数据了。
     eg. 为什么不用 散列表和二叉树?
    如果⽤散列表或者⼆叉树来存储这1000万的数据, 每个节点除了存储数据还要存储邻居或子节点引用关系。⽽ ⼆分查找底层依赖的是数组,除了数据本身之外,不需要额外存储其他信息,是最省内存空间的存储⽅式。

(2)如何快速定位IP地址的归属地?

     问题: 查询202.102.133.13 IP地址的归属地时,在地址库中搜索,发现这个IP地址落在[202.102.133.0, 202.102.133.255]这个地址范围内,其归属地为“山东东营市”。
    
    方法: 如果IP区间与归属地的对应关系不经常更新,我们可以先预处理这12万条数据,让其按照起始IP从⼩到⼤排序(IP地址可以转化为32位的整型数)。
    查找过程=“ 在有序数组中,查找最后一个小于等于某个给定值的元素 ”。
     当我们要查询某个IP归属地时,我们可以先通过二分查找,找到最后一个起始IP小于等于这个IP的IP区间,然后,检查这个IP是否在这个IP区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。

### 二分查找算法在闭区间上的实现方法 二分查找是一种高效的搜索算法,适用于已排序的数组或列表。在闭区间 `[left, right]` 上实现二分查找时,关键在于确保循环条件、中间值计算以及边界更新的一致性[^1]。 以下是一个基于闭区间的二分查找实现: ```cpp template<typename T> int binarySearch(T arr[], int n, T target) { int left = 0, right = n - 1; // 定义闭区间 [left, right] while (left <= right) { // 循环条件为 left <= right int middle = left + (right - left) / 2; // 防止溢出,计算中间索引 if (arr[middle] == target) { return middle; // 找到目标值,返回索引 } else if (target > arr[middle]) { left = middle + 1; // 目标值在右半部分,更新左边界 } else { right = middle - 1; // 目标值在左半部分,更新右边界 } } return -1; // 未找到目标值,返回 -1 } ``` #### 实现细节说明 1. **初始化区间**:闭区间 `[left, right]` 的初始值分别为 `0` 和 `n - 1`,表示整个数组范围[^5]。 2. **循环条件**:`while (left <= right)` 确保在区间内进行搜索。当 `left > right` 时,表示区间为空,退出循环[^2]。 3. **中间值计算**:`middle = left + (right - left) / 2` 避免了直接使用 `(left + right) / 2` 可能导致的整数溢出问题[^3]。 4. **边界更新**: - 当 `target > arr[middle]` 时,目标值位于右半部分,因此将左边界更新为 `middle + 1`[^5]。 - 当 `target < arr[middle]` 时,目标值位于左半部分,因此将右边界更新为 `middle - 1`。 这种实现方式保证了闭区间 `[left, right]` 在每次迭代中都被正确划分,并避免了死循环的发生[^2]。 ### 注意事项 - 如果目标值不存在于数组中,算法会返回 `-1`,表示查找失败。 - 在更新边界时,必须注意保持区间的闭合性质,否则可能导致逻辑错误或死循环[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值