数据结构&算法模块总结
- (1)复杂度分析原理与方法
- (2)数组与链表原理和使用场景讲解
- (3)栈原理与应用场景讲解
- (4)队列原理与应用场景讲解
- (5)递归原理与虚拟机栈场景应用
- (6)二分查找及其应用场景
- (7)Redis有序集合跳表实现原理
- (8) 散列表(Hash Table)原理和业界应用场景
1.散列思想和散列函数
(1)散列思想
-
数组实现:因为参赛编号1~n跟数组下标一一对应,当我们需要查询参赛编号为x的选手的时候,我们只需要将下标为x的数组元素取出来就可以了,时间复杂度就是O(1)。
-
散列函数实现:使用复杂能够区分用户的编号XXXXX作为 key 。
-
把参赛编号key转化为数组下标的映射方法就叫作 散列函数(或“Hash函数”“哈希函数”)
-
而 散列函数计算得到的值就叫作 散列值(或“Hash值”“哈希值”)
-

(2)散列函数
三点散列函数设计的基本要求:
-
散列函数计算得到的散列值是一个非负整数 ( 因为数组下标是从0开始的,所以散列函数生成的散列值也要是非负整数 )。
-
如果key1 = key2,那hash(key1) == hash(key2) (相同的key,经过散列函数得到的散列值也应该是相同的) 。
-
如果key1 ≠ key2,那hash(key1) ≠ hash(key2) (但是不同Key经过散列函数得到的散列不一定不一样,散列冲突问题!)。
因此,要想找到一个不同的key对应的散列值都不一样的散列函数,几乎是不可能的。即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。
2.散列函数设计
(1)散列函数设计原则
-
计算性能优异
-
散列函数生成的值要尽可能随机并且均匀分布,这样散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。
-
关键字的长度、特点、分布、还有散列表的大小等等....
(2)转载因子过大调整
对于动态散列表来说,数据集合是频繁变动的,我们事先无法预估将要加入的数据个数,所以我们也无法事先申请一个足够大的散列表。当装载因子大到一定程度之后,散列冲突就会变得不可接受。
动态扩容解决:
当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容我们都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了0.4。
例如在原来的散列表中,21这个元素原来存储在下标为0的位置,搬移到新的散列表中,存储在下标为7的位置。
(3)扩容设计
在特殊情况下,当装载因子已经到达阈值,需要先进行扩容,再插入数据。这个时候,插入数据就会变得很慢,甚至会无法接受。
为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。
当有新数据要插入时,将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。重复经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
期间可能有些业务查询操作,为了兼容了新、老散列表中的数据,我们先从新散列表中查找,如果没有找到,再去老的散列表中查找。通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是O(1)。
3.散列冲突两种解决方式
【实用场景】
(1)开放地址法
①线性探测
②二次探测
③双重探测
散列表的装载因子=填入表中的元素个数/散列表的长度
-
优点: 当数据量比较小、装载因子小的时候,适合采用开放寻址法。
-
缺点:装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
(2)链表法



//追求的是简单高效、分布均匀
int hash(Object key) {
int h = key.hashCode(); //(1)计算key对应的hashcode
return (h ^ (h >>> 16)) & (capitity -1); //(2)capicity表示散列表的大小
}
public int hashCode() {
int var1 = this.hash;
if(var1 == 0 && this.value.length > 0) {
char[] var2 = this.value;
for(int var3 = 0; var3 < this.value.length; ++var3) {
var1 = 31 * var1 + var2[var3];
}
this.hash = var1;
}
return var1;
}
4.缓存应用场景:散列表+链表实现LRU
(1)缓存系统原理
-
往缓存中 添加一个数据;
-
从缓存中 删除一个数据;
-
在缓存中 查找一个数据。
(2)散列表和链表 O(1)实现
-
查找数据:首先计算 数据的hash值找到散列表下标,时间复杂度接近O(1) 。然后在双向列表中找到缓存值。 当找到数据之后,我们还需要将它移动到双向链表的尾部。
-
删除数据:首先需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在O(1)时间复杂度里找到要删除的结点。因为链表是双向链表,双向链表可以通过前驱指针O(1)时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要O(1)的时间复杂度。
-
添加数据:首先看数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。

5.有序集合应用场景:Redis有序集合
-
添加一个成员对象;
-
按照键值来删除一个成员对象;
-
按照键值来查找一个成员对象;
-
按照分值区间查找数据,比如查找积分在[100, 356]之间的成员对象;
-
按照分值从小到大排序成员变量;
6.应用场景:LinkedHashMap和HashMap
(1)LinkedHashMap和HashMap结构区别
(2)LinkedHashMap时间顺序
//(1) 10是初始大小,0.75是装载因子,true是表示按照访问时间排序
HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);
//(2) 重复插入key=3
m.put(3, 26);
//(3) 访问key=5
m.get(5);
for (Map.Entry e : m.entrySet()) {
System.out.println(e.getKey());
}