二分查找算法是运用分治策略的典型例子。
给定一组已经排好序的n个元素a[n],从这n个元素中找到一个特定元素x。
基本思想:将n 个元素划分成个数大致相同的两部分,取中间元素a[n/2]与x进行比较:
c++如果x=a[n/2],即找到x,算法终止;
如果x<a[n/2],则只在数组a的左半部分继续查找x;
如果x>a[n/2],则只在数组a的右半部分继续查找x。
#include <iostream>
using namespace std;
//递归实现
int Search(int start,int last,int a[],int target)
{
if(start>last) return -1;
int middle = (start+last)/2;
if(target==a[middle])return middle;
else if(target>a[middle])return Search(middle+1,last,a,target);
else if(target<a[middle])return Search(start,middle-1,a,target);
}
int Searcht(int a[],int target,int n)//非递归实现
{
int left=0,right=n-1;
int index = -1;
while(left<=right)
{
int middle = (left+right)/2;
if(target==a[middle]){index= middle;break;}
else if(target>a[middle])left = middle+1;
else if(target<a[middle])right=middle-1;
}
return index;
}
int main()
{
int a[] = {0,1,3,4,6,8,9,10,18,25,36,78,99};
//cout<<Search(0,12,a,4)<<endl;
cout<<Searcht(a,4,12)<<endl;
}
复杂性分析:对于非递归实现,每执行一次while循环,待查找数组的大小减小一半,因此,最坏情况下,while循环被执行了O(logn)次,循环体内/外的运算需要O(1)时间,所以整个算法在最坏情况下的时间复杂性为O(logn)。对于递归实现,最坏情况下进行O(logn)次递归,所以整个算法在最坏情况下的时间复杂性也是O(logn)。