Keras学习(1)-识别手写体的例子

Keras是由纯Python编写而成并基Tensorflow或Theano后端(backend)的高层神经网络API。
Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈

简单的例子:使用Keras对手写数字进行分类
(1)加载训练图片

import os
from PIL import Image
import numpy as np

#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,
#如果是将彩色图作为输入,则将1替换为3,图像大小28*28
def load_data():
    data = np.empty((42000,1,28,28),dtype="float32")
    label = np.empty((42000,),dtype="uint8")

    imgs = os.listdir("./mnist")
    num = len(imgs)
    for i in range(num):
        img = Image.open("./mnist/"+imgs[i])
        arr = np.asarray(img,dtype="float32")
        data[i,:,:,:] = arr
        label[i] = int(imgs[i].split('.')[0])
        #data /= np.max(data)
        #data -= np.mean(data)
    data=data.reshape(42000,28,28,1)
    return data,label
data , label = load_data()

(2) 构建分类模型

#coding:utf-8
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential  
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
#加载数据
data, label = load_data()
print(data.shape[0], ' samples')
#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
train_data = data[:40000]
train_labels = label[:40000]

validation_labels = label[40000:]
validation_data = data[40000:]
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5,input_shape=(28, 28,1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
#Softmax分类,输出是10类别
model.add(Dense(10))
model.add(Activation('softmax'))

#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
#optimizer是优化器
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

#完成模型编译后,我们在训练数据上按batch进行一定次数的迭代来训练网络
model.fit(train_data, train_labels,
          nb_epoch=10, batch_size=100,
          validation_data=(validation_data, validation_labels))


json_string = model.to_json()

这里写图片描述
这里写图片描述

阅读更多
换一批

没有更多推荐了,返回首页