Keras深度学习实战(37)——手写文字识别
0. 前言
当前越来越多的场景需要将手写体的文字转换为电子格式,手写体识别成为人机交互最便捷的手段之一,拥有广泛的应用前景。在识别图像中手写文字(即转录手写文本图像)的问题中,我们需要同时处理图像数据和顺序数据,这是由于因为图像中的内容需要按顺序进行转录。在本节中,我们使用 Keras
库融合卷积神经网络 (Convolutional Neural Networks
, CNN
) 和循环神经网络 (Recurrent Neural Network
, RNN
) 实现深度学习手写识别模型。
1. 手写文字识别相关背景
在传统的手写文字识别方法中,通常需要人工参与。例如:在图像上使用滑动窗口,窗口大小是字符的平均大小,以便可以检测每个字符,然后输出它检测到的具有较高置信度的字符。然而,窗口的大小或滑动窗口数量需要进行人工确认。因此,这本质上属于一个特征工程问题。
为了使用端到端的方法,降低人工时间成本,我们可以通过卷积神经网络 (Convolutional Neural Networks
, CNN
) 提取图像特征,然后将这些特征作为输入传递给循环神经网络 (Recurrent Neural Network<