Keras深度学习实战(37)——手写文字识别

本文介绍了如何结合卷积神经网络(CNN)和循环神经网络(RNN),特别是使用Keras库,实现手写文字识别。重点讨论了Connectionist Temporal Classification (CTC)损失函数,用于解决序列数据的标签对齐问题,并提供了模型构建和训练的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

当前越来越多的场景需要将手写体的文字转换为电子格式,手写体识别成为人机交互最便捷的手段之一,拥有广泛的应用前景。在识别图像中手写文字(即转录手写文本图像)的问题中,我们需要同时处理图像数据和顺序数据,这是由于因为图像中的内容需要按顺序进行转录。在本节中,我们使用 Keras 库融合卷积神经网络 (Convolutional Neural Networks, CNN) 和循环神经网络 (Recurrent Neural Network, RNN) 实现深度学习手写识别模型。

1. 手写文字识别相关背景

在传统的手写文字识别方法中,通常需要人工参与。例如:在图像上使用滑动窗口,窗口大小是字符的平均大小,以便可以检测每个字符,然后输出它检测到的具有较高置信度的字符。然而,窗口的大小或滑动窗口数量需要进行人工确认。因此,这本质上属于一个特征工程问题。
为了使用端到端的方法,降低人工时间成本,我们可以通过卷积神经网络 (Convolutional Neural Networks, CNN) 提取图像特征,然后将这些特征作为输入传递给循环神经网络 (Recurrent Neural Network<

评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值