以下图的遍历为例
广度优先搜索
英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。在实际实现中,使用队列来进行实现,先往队列中插入左节点再插入右节点,这样出队就是先左后右了。
- 先将A插入队列中,队列中有元素(A)
- 将A弹出,得到A结点,然后A的孩子从左至右先后放到队列中,(B,C)。
- 继续弹出B,得到B结点,然后将B的孩子从左至右先后放入到队列中,(C,D,E)。
- 然后弹出C,将C的左右孩子依次放入(D,E,F,G,H)。
- 将D弹出,D没有孩子,队列不新增。(E,F,G,H)
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public ArrayList<Integer> PrintFromTopToBottom(TreeNode root) {
ArrayList<Integer> lists=new ArrayList<Integer>();
if(root==null)
return lists;
Queue<TreeNode> queue=new LinkedList<TreeNode>();
queue.offer(root);
while(!queue.isEmpty()){
TreeNode tree=queue.poll();
if(tree.left!=null)
queue.offer(tree.left);
if(tree.right!=null)
queue.offer(tree.right);
lists.add(tree.val);
}
return lists;
}
}
深度优先搜索
英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。
先往栈中压入右节点,再压左节点,这样出栈就是先左节点后右节点了。
- 首先将A节点压入栈中,stack(A);
- 将A节点弹出,同时将A的子节点C,B压入栈中,此时B在栈的顶部,stack(B,C)
- 将B节点弹出,同时将B的子节点E,D压入栈中,此时D在栈的顶部,stack(D,E,C)
- 将D节点弹出,没有子节点压入,此时E在栈的顶部,stack(E,C)
- 将E节点弹出,同时将E的子节点I压入,stack(I,C)
- 弹出I,I没有孩子,栈中不新增新的结点,stack(C)
- 弹出C,C的三个孩子从右往左依次进入栈中,stack(F,G,H)
- 以此类推…
代码实现(二叉树的,多叉树类似):
非递归:
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public ArrayList<Integer> PrintFromTopToBottom(TreeNode root) {
ArrayList<Integer> lists=new ArrayList<Integer>();
if(root==null)
return lists;
Stack<TreeNode> stack=new Stack<TreeNode>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode tree=stack.pop();
//先往栈中压入右节点,再压左节点,这样出栈就是先左节点后右节点了。
if(tree.right!=null)
stack.push(tree.right);
if(tree.left!=null)
stack.push(tree.left);
lists.add(tree.val);
}
return lists;
}
}
递归:
public void depthOrderTraversalWithRecursive()
{
depthTraversal(root);
}
private void depthTraversal(TreeNode tn)
{
if (tn!=null)
{
System.out.print(tn.value+" ");
depthTraversal(tn.left);
depthTraversal(tn.right);
}
}