BZOJ 3238 差异

题意

给出一个长度为n的字符串S,令 T i T_i Ti表示它从第i个字符开始的后缀。求
(其中 l e n ( a ) len(a) len(a)表示字符串a的长度,lcp(a,b)表示字符串a和字符串b的最长公共前缀)
a n s = ∑ 1 ≤ i &lt; j ≤ n l e n ( T i ) + l e n ( T j ) − 2 ∗ l c p ( T i , T j ) ans=\sum_{1\leq i&lt;j \leq n}len(T_i)+len(T_j)-2*lcp(T_i,T_j) ans=1i<jnlen(Ti)+len(Tj)2lcp(Ti,Tj)

题解

我们试图转化要求和的那一坨,然而似乎并不能转化出什么?
我们可以分成两部分
a n s 1 = ∑ 1 ≤ i &lt; j ≤ n l e n ( T i ) + l e n ( T j ) = ∑ 1 ≤ i &lt; j ≤ n ( n − i + 1 ) + ( n − j + 1 ) = ∑ 1 ≤ i &lt; j ≤ n i + j = ∑ i = 1 n ( ( n − i ) i + ∑ j = i + 1 n j ) = ∑ i = 1 n ( ( n − i ) i + n 2 + n − i 2 − i 2 ) = ∑ i = 1 n ( n − i ) i + n ( n + 1 ) 2 − i 2 + i 2 = n 2 ( n + 1 ) 2 + ∑ i = 1 n n i + − 3 i 2 − i 2 = n 2 ( n + 1 ) 2 + n ∑ i = 1 n i − 3 2 ∑ i = 1 n i 2 − 1 2 ∑ i = 1 n i = n 2 ( n + 1 ) − n ( n + 1 ) ( 2 n + 1 ) 4 − n ( n + 1 ) 4 = n 2 ( n + 1 ) − n ( n + 1 ) 2 2 = n ( n − 1 ) ( n + 1 ) 2 ans_1=\sum_{1\leq i&lt;j \leq n}len(T_i)+len(T_j)=\sum_{1\leq i&lt;j \leq n}(n-i+1)+(n-j+1)=\sum_{1\leq i&lt;j \leq n}i+j\\ =\sum_{i=1}^n((n-i)i+\sum_{j=i+1}^nj)=\sum_{i=1}^n((n-i)i+\frac{n^2+n-i^2-i}{2})\\ =\sum_{i=1}^n(n-i)i+\frac{n(n+1)}{2}-\frac{i^2+i}{2}\\ =\frac{n^2(n+1)}{2}+\sum_{i=1}^nn_i+\frac{-3i^2-i}{2}\\ =\frac{n^2(n+1)}{2}+n\sum_{i=1}^ni-\frac{3}{2}\sum_{i=1}^ni^2-\frac{1}{2}\sum_{i=1}^ni\\ =n^2(n+1)-\frac{n(n+1)(2n+1)}{4}-\frac{n(n+1)}{4}=n^2(n+1)-\frac{n(n+1)^2}{2}\\ =\frac{n(n-1)(n+1)}{2} ans1=1i<jnlen(Ti)+len(Tj)=1i<jn(ni+1)+(nj+1)=1i<jni+j=i=1n((ni)i+j=i+1nj)=i=1n((ni)i+2n2+ni2i)=i=1n(ni)i+2n(n+1)2i2+i=2n2(n+1)+i=1nni+23i2i=2n2(n+1)+ni=1ni23i=1ni221i=1ni=n2(n+1)4n(n+1)(2n+1)4n(n+1)=n2(n+1)2n(n+1)2=2n(n1)(n+1)
em…推得好像有点复杂
所以…还可以这样想,每个数会被算n-1次,所以就是 ∑ i = 1 n ( n − 1 ) i = n ( n − 1 ) ( n + 1 ) 2 \sum_{i=1}^n(n-1)i=\frac{n(n-1)(n+1)}{2} i=1n(n1)i=2n(n1)(n+1)
a n s = a n s 1 − 2 ∗ a n s 2 ans=ans_1-2*ans_2 ans=ans12ans2
下面的问题就是解决 a n s 2 ans_2 ans2

后缀自动机解法

求后缀的lcp,就相当于求翻转串的前缀的最长公共后缀
对于自动机上两个节点(相对于复制节点而言)u,v,他们的lca能表示出的最长长度就是这两个前缀的最长公共后缀
所以我们就可以进行一次dfs,统计出Right大小,同时计算出以当前点为lca时的贡献

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000000+5,T=1000000+5;
const int INF=1<<30;
typedef long long ll;
char s[N];
int sz[N];
struct node{
    node *fail;
    node *ch[26];
    int len;
}a[T],*last,*tcnt,*root;
void Init(){
    last=tcnt=root=&a[0];
}
void Insert(char *s){
    int n=strlen(s);
    last=root;
    for(int i=0;i<n;i++){
        int c=s[i]-'a';
        node *p=last,*np=++tcnt,*q,*nq;
        last=np;
        np->len=p->len+1;
        sz[np-root]=1;
        while(p&&!p->ch[c])
            p->ch[c]=np,p=p->fail;
        if(!p)
            np->fail=root;
        else{
            q=p->ch[c];
            if(q->len==p->len+1){
                np->fail=q;
            }
            else{
                nq=++tcnt;
                *nq=*q;
                nq->len=p->len+1;
                np->fail=nq;
                q->fail=nq;
                while(p&&p->ch[c]==q)
                    p->ch[c]=nq,p=p->fail;
            }
        }
    }
}
struct mode{
    int u,v,w,nxt;
}edge[N*2];
int head[N],mcnt;
void add_edge(int u,int v,int w){
    mcnt++;
    edge[mcnt].u=u;
    edge[mcnt].v=v;
    edge[mcnt].w=w;
    edge[mcnt].nxt=head[u];
    head[u]=mcnt;
    //printf("%d ->%d :%d\n",u,v,w);
}
int dist[N];
ll val[N];
void dfs(int u){
    for(int i=head[u];i;i=edge[i].nxt){
        int v=edge[i].v,w=edge[i].w;
        dist[v]=dist[u]+w;
        dfs(v);
        val[u]+=1ll*sz[u]*sz[v];
        sz[u]+=sz[v];
    }
}
int main()
{
    Init();
    scanf("%s",s);
    int n=strlen(s);
    reverse(s,s+n);
    Insert(s);
    for(node *p=root+1;p<=tcnt;p++){
        add_edge(p->fail-root,p-root,p->len-p->fail->len);
    }
    dfs(0);
    ll ans2=0;
    for(int i=0;root+i<=tcnt;i++)
        ans2+=1ll*dist[i]*val[i];
    ans2*=2;
    ll ans1=1ll*n*(n+1)/2*(n-1);
    printf("%lld\n",ans1-ans2);
}

后缀数组解法

我们知道LCP(i,j)就是对应height间的最小值
那么我们可以想起这个问题:
给出一个柱形图,答案加上每两个柱之间最小的高度
那么就显然可以用单调栈来做了
注意到相等的问题,我们左右两遍单调栈的取等不太一样即可

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e6+5,C=128;
char a[N];
char s[N];
int b[N];
int n;
int arr[4][N];
int height[N];
int *sa,*rk,*nsa,*nrk;
void calc_sa(char *a){
    sa=arr[0],rk=arr[1],nsa=arr[2],nrk=arr[3];
    memset(b,0,sizeof b);
    for(int i=1;i<=n;i++)
        b[a[i]]++;
    for(int i=1;i<=C;i++)
        b[i]+=b[i-1];
    for(int i=1;i<=n;i++)
        sa[b[a[i]]--]=i;
    for(int i=1;i<=n;i++){
        rk[sa[i]]=rk[sa[i-1]];
        if(a[sa[i]]!=a[sa[i-1]])
            rk[sa[i]]++;
    }
    for(int k=1;rk[sa[n]]<n&&k<n;k<<=1){
        for(int i=1;i<=n;i++)
            b[rk[sa[i]]]=i;
        for(int i=n;i>=1;i--)
            if(sa[i]>k)
                nsa[b[rk[sa[i]-k]]--]=sa[i]-k;
        for(int i=n-k+1;i<=n;i++)
            nsa[b[rk[i]]--]=i;
        for(int i=1;i<=n;i++){
            nrk[nsa[i]]=nrk[nsa[i-1]];
            if(rk[nsa[i]]!=rk[nsa[i-1]]||rk[nsa[i]+k]!=rk[nsa[i-1]+k])
                nrk[nsa[i]]++;
        }
        swap(sa,nsa);
        swap(rk,nrk);
    }
}
void calc_height(char *a){
    for(int i=1,k=0;i<=n;i++){
        if(rk[i]==1)
            height[1]=0;
        else{
            if(k>0)
                k--;
            for(int j=sa[rk[i]-1];i+k<=n&&j+k<=n&&a[i+k]==a[j+k];k++) ;
            height[rk[i]]=k;
        }
    }
}
int st[N],top;
int L[N],R[N];
int main()
{
    scanf("%s",s+1);
    n=strlen(s+1);
    calc_sa(s);
    calc_height(s);
    for(int i=1;i<=n;i++){
        while(top&&height[st[top]]>=height[i])
            top--;
        L[i]=st[top];
        st[++top]=i;
    }
    top=0;
    st[0]=n+1;
    for(int i=n;i>=1;i--){
        while(top&&height[st[top]]>height[i])
            top--;
        R[i]=st[top];
        st[++top]=i;
    }
    ll ans=1ll*n*(n+1)/2*(n-1);
    for(int i=1;i<=n;i++)
        ans-=2ll*height[i]*(i-L[i])*(R[i]-i);
    printf("%lld\n",ans);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值