NYOJ 841-又见拦截导弹

又见拦截导弹

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述

大家对拦截导弹那个题目应该比较熟悉了,我再叙述一下题意:某国为了防御敌国的导弹袭击,新研制出来一种导弹拦截系统但是这种导弹拦截系统有一个缺陷它的第一发炮弹能够到达任意的高度但是以后每一发炮弹都不能超过前一发的高度。突然有一雷达捕捉到敌国的导弹来袭。由于该系统存在缺陷,所以如果想把所有的导弹都拦截下来,就要多准备几套这样的导弹拦截系统。但是由于该系统成本太高,所以为了降低成本,请你计算一下最少需要多少套拦截系统。

输入
有多组测试数据。
每组数据先输入一个整数N(N≤3000),代表有N发导弹来袭。接下来有N个数,分别代表依次飞来的导弹的导弹的高度。当N=-1时表示输入结束。
输出
每组输出数据占一行,表示最少需要多少套拦截系统。
样例输入
8
389 207 155 300 299 170 158 65
5
265 156 123 76 26
样例输出
2

1


**思路:求单调递减序列的个数,

但看了别人的思路后,我发现反过来求的最长单调递增数列的长度就是答案,至于为什么,现在还是似懂非懂,先写下,来日方长慢慢看

方法上可以用DP也可以不用

1,dp版本

其中的 dp[i] 表示以 arr[i]为结尾的单调递减序列的长度,

 dp[i] = max{dp[i],dp[j]+1};(动态转移方程)

具体意思我说不清,见参考书 挑战程序设计 p64 下



 
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
	int n,i,j;
	while(cin>>n&&n!=-1)
	{
		int arr[n],dp[n+3];
		for(i=0;i<n;i++)
		{
			cin>>arr[i];
			dp[i] = 1;
		}
		for(i=0;i<n;i++)
		{
			for(j=0;j<i;j++)
			{
				if(arr[i]>arr[j])//由递推公式的来的
					dp[i] = max(dp[i],dp[j]+1);
			}
		}
		int themax = 0;
		for(i=0;i<n;i++)
		{
			if(dp[i]>themax)
				themax = dp[i];
		}
		cout<<themax<<endl;	
	}
	return 0;
}        

2,

另一种高能的算法,也是书上的,效率是上面dp的100倍!!

也是那页书后面的,更说不好说,自己看吧,这才是乐趣

#include <iostream>
#include <algorithm>
const int INF = 0x6ffffff;
using namespace std;
int main()
{
	int n,i,j,themax;
	while(cin>>n&&n!=-1)
	{
		int arr[n],dp[n+3];
		themax = 0;
		for(i=0;i<n;i++)
		{
			cin>>arr[i];
		}
		fill(dp,dp+n+3,INF);
		for(i=0;i<n;i++)
		{
			int *p = lower_bound(dp,dp+n,arr[i]);
			 *p = arr[i];
		}
		cout<<lower_bound(dp,dp+n+3,INF)-dp<<endl;
	}
	return 0;
}


奈何我冒泡的算法如何打动你超时的心!!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值