有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入描述:
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出描述:
输出不同的选择物品的方式的数目。
示例1
输入
3
20
20
20
输出
3
解法一
链接:https://www.nowcoder.com/questionTerminal/9aaea0b82623466a8b29a9f1a00b5d35
来源:牛客网
本题采用递归思想:
①物品n个,物品体积逐一放入a[100]中
②递归函数count(i,sum)=count(i+1,sum-a[i])+count(i+1,sum);
其中,i为第i个物品,sum代表剩余空缺体积数
count(i+1,sum-a[i]) 代表从第i+1个物品开始,剩余体积数为sum-a[i]的方案数
(隐含:已经将a[i]的体积计算进去,即包含a[i]的体积)
count(i+1,sum) 代表从第i+1个物品开始,剩余体积数为sum的方案数
(隐含:不将a[i]的体积计算进去,即不包含a[i]的体积)
代码如下:
#include<stdio.h>
int a[100];
int n=1;
int count(int i,int sum){ //递归函数
if(sum==0) return 1;
if(i==n||sum<0) return 0;
return count(i+1,sum-a[i])+count(i+1,sum);
}
int main(){
while(scanf("%d",&n)!=EOF){
for(int i=0;i<n;i++) scanf("%d",&a[i]);
printf("%d",count(0,40));
}
return 0;
}
解法二
链接:https://www.nowcoder.com/questionTerminal/9aaea0b82623466a8b29a9f1a00b5d35
来源:牛客网
#include<iostream>
using namespace std;
#define N 100
int n,a[N];
int main()
{
while(cin>>n){
int (*dp)[50]=new int[N][50];//dp[i][j]表示从前i个物品中凑出体积j;
for(int i=1;i<=n;i++)
{
cin>>a[i];
dp[i][0]=1; //初始边界
}
dp[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=40;j++)
{
dp[i][j]=dp[i-1][j];
if(a[i]<=j)
dp[i][j]+=dp[i-1][j-a[i]];
}
cout<<dp[n][40]<<endl;
delete []dp;
}
return 0;
}