Sensorjang
码龄9年
关注
提问 私信
  • 博客:8,377
    8,377
    总访问量
  • 5
    原创
  • 1,717,879
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2016-07-11
博客简介:

qq_35576563的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得15次评论
  • 获得41次收藏
创作历程
  • 5篇
    2022年
成就勋章
TA的专栏
  • 文学书籍
    1篇
  • 联邦学习
    2篇
  • 公平性
    2篇
  • 模拟退火算法
    1篇
兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 人工智能
    机器学习tensorflowpytorch边缘计算迁移学习
  • 服务器
    linux
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《孙子兵法》十三篇原文——孙武

《孙子兵法》十三篇原文孙武(校本: 《孙子兵法新注》,中华书局,1986年1版5刷)
原创
发布博客 2022.11.29 ·
2286 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

联邦学习论文笔记——FedFair: Training Fair Models In Cross-Silo Fedrated Learning

**本文的工作:**1)提出了一种联合估计方法,在不侵犯任何一方数据隐私的情况下,准确估计模型的公平性。2)证明了联合估计方法比局部估计模型对单个参与者的公平性更准确,这导致在跨竖井联合学习中具有更好的公平模型训练性能。3)构建了新的FedFair问题;开发了一个有效的联合学习框架来解决这个问题,而不侵犯任何一方的数据隐私。4)充分的的实验
原创
发布博客 2022.11.27 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

联邦学习论文笔记——一种联邦学习中的公平资源分配方案(田家会 α-Fedavg)

首先定义用户效用:Rk=ak·pk(实际用户效用=模型准确率·聚合权重)(模型准确率指,本轮中心参数服务器下发给参与者的全局模型,经参与者自己计算后获取的的准确率)(聚合权重指,本轮中,各个节点将自己的梯度或模型参数发给中心参数服务器后,参数服务器根据【①上传的参数或梯度②上传的准确率】为各个参与者设计的聚合权重)对于每个用户来讲,即希望准确率a高也希望聚合权重p高,用乘积作为效用进一步定义系统 有效性量化E、公平性量化J:是所有用户效用的和,它越高说明整个系统的有效性越高。
原创
发布博客 2022.10.18 ·
1789 阅读 ·
2 点赞 ·
8 评论 ·
11 收藏

模拟退火中关于Boltzmann分布和Metropolis采样方法的应用探讨

模拟退火中关于Boltzmann分布和Metropolis采样方法的应用探讨在学习模拟退火算法时可能会遇到以上两个知识,对于他们在算法中的意义和用法,很容易让初学者难以理解,因此根据本人学习理解写下本文。
原创
发布博客 2022.10.12 ·
753 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

联邦学习论文笔记——一种面向边缘计算的高效异步联邦学习机制

一种 **高效** **异步** 的联邦学习机制EAFLM(Efficient Asynchronous Fedrated Learning Mechanism)其中:**高效**的实现目标主要是实现通信压缩,文章在前人Chen等人提出的LAG自适应压缩的工作基础上,提出了一种**阈值自适应的压缩算法**。文章中的通信压缩属于“通信稀疏化”的范畴。**异步**方面的工作是实现了各个边缘设备真正的异步训练,允许节点在任何学习过程中加入或退出联邦学习。提出了**双重权重**的方法以解决异步学习带来的性能
原创
发布博客 2022.09.26 ·
2735 阅读 ·
1 点赞 ·
6 评论 ·
24 收藏