FFT+简单生成函数+容斥原理两题

2023大厂真题提交网址(含题解):

www.CodeFun2000.com(http://101.43.147.120/)

最近我们一直在将收集到的机试真题制作数据并搬运到自己的OJ上,供大家免费练习,体会真题难度。现在OJ已录入50+道2023年最新大厂真题,同时在不断的更新。同时,可以关注"塔子哥学算法"公众号获得每道题的题解。
在这里插入图片描述

一.HDU4609
题目大意:

给你一个序列,任意选出三个不重复的数使得其能够组成三角形的概率.

1 ≤ n , a i ≤ 1 e 5 1 \leq n,a_i \leq 1e5 1n,ai1e5

题目思路:

总方案数: C n 3 C^3_n Cn3

假设三个数 a ≤ b ≤ c a \leq b \leq c abc,那么显然可以构造多项式自乘得出 x k x^k xk的系数代表 a + b = k a+b=k a+b=k的方案数。

但是这个方案数有 a = b a=b a=b,先减去这个部分。
然后由于乘法有顺序,像 a b , b a ab,ba ab,ba这种,所以方案除以2,除掉顺序.

接下来枚举 c c c为最大值,考虑多项式的系数 > c > c >c的都可以。就是一个后缀和

但是这个时候发现还是有很多重复的部分要处理,比如你无法保证系数中的所有方案中的都 a , b a,b a,b都小于等于c.反向考虑不合法的情况:就是一个前缀和。这个时候就直接是方案了。即 a n s = ∑ p r e [ c i ] ans=\sum pre[c_i] ans=pre[ci]

PS:因为任意一个系数 ≤ c \leq c c,意味着 a + b ≤ c a+b \leq c a+bc.那么就可以保证 c c c是最大值,不会发生上面那种情况。

所以答案为 1 − a n s C n 3 1-\frac{ans}{C_n^3} 1Cn3ans.

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define vi vector<int>
#define vl vector<ll>
#define fi first
#define se second
namespace FFT{
    const int maxn = 302144+10;
    const double Pi = acos(-1.0);
    struct complex{
        double x,y;
        complex (double xx=0,double yy=0){x=xx,y=yy;}
    }a[maxn],b[maxn];
    complex operator + (complex a,complex b){ return complex(a.x+b.x , a.y+b.y);}
    complex operator - (complex a,complex b){ return complex(a.x-b.x , a.y-b.y);}
    complex operator * (complex a,complex b){ return complex(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);}//不懂的看复数的运算那部分
    int l,r[maxn];
    int limit = 1;
    void fast_fast_tle(complex *A , int type)
    {
        for(int i=0;i<limit;i++)
            if(i<r[i]) swap(A[i],A[r[i]]);//求出要迭代的序列
        for(int mid=1;mid<limit;mid<<=1)//待合并区间的中点
        {
            complex Wn( cos(Pi/mid) , type*sin(Pi/mid) ); //单位根
            for(int R=mid<<1,j=0;j<limit;j+=R)//R是区间的右端点,j表示前已经到哪个位置了
            {
                complex w(1,0);//幂
                for(int k=0;k<mid;k++,w=w*Wn)//枚举左半部分
                {
                    complex x=A[j+k],y=w*A[j+mid+k];//蝴蝶效应
                    A[j+k]=x+y;
                    A[j+mid+k]=x-y;
                }
            }
        }
    }
    void ploy_mul (int x[] , int y[] , int n , int m , ll res[])
    {
        // 多组数据记得清空. 要清空到lim
        limit = 1;l = 0;
        while(limit<=n+m) limit<<=1 , l++;
        for (int i = 0 ; i <= limit ; i++)
            a[i].x = a[i].y = b[i].x = b[i].y = 0.0 , r[i] = 0;
        for (int i = 0 ; i < n ; i++) a[i].x = 1.0 * x[i] , a[i].y = 0.0;
        for (int i = 0 ; i < m ; i++) b[i].x = 1.0 * y[i] , b[i].y = 0.0;

        for(int i=0;i<limit;i++)
            r[i]= ( r[i>>1]>>1 )| ( (i&1)<<(l-1) ) ;
        fast_fast_tle(a,1);
        fast_fast_tle(b,1);
        for(int i=0;i<=limit;i++) a[i] = a[i] * b[i];
        fast_fast_tle(a,-1);
        for (int i = 0 ; i <= n + m ; i++) res[i] = (ll)(a[i].x/limit + 0.5);
    }
}
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
int a[maxn];
ll res[maxn * 2];
ll calc (ll x){
    return x * (x - 1) * (x - 2) / 6;
}
int main()
{
    int t; scanf("%d" , &t);
    while (t--){
        int n ; scanf("%d" , &n);
        vi b;
        for (int i = 1 ; i <= n ; i++){
            int x ; scanf("%d" , &x);
            a[x]++;
            b.pb(x);
        }
        int mx = *max_element(b.begin(),b.end());
        FFT::ploy_mul(a ,  a , mx + 1 , mx + 1 , res);
        int up = mx * 2;
        for (auto g : b) res[g + g]--;
        for (int i = 1 ; i <= up ; i++) res[i] /= 2;
        for (int i = 1 ; i <= up ; i++) res[i] += res[i - 1];
        ll tot = 0;
        for (auto g : b) tot += res[g];
        double ans = (1.0 * tot) / (1.0 * calc(n));
        printf("%.7f\n" , 1.0 - ans);
        // 撤销贡献
        for (auto g : b) a[g]--;
        for (int i = 0 ; i <= up ; i++) res[i] = 0;
    }
    return 0;
}
二.SPOJ TSUM Triple Sums
题目大意:

给你 n n n个数字,然后从中任意挑选三个不重复的数字并求和,让你输出和的所以可能以及对应取到每个和的方案数。

题目思路:

容斥

如果没有限制重复,直接 A 3 ( x ) A^3(x) A3(x)即可。看下这里面含有什么

i j k ijk ijk 3 ! = 6 3!=6 3!=6
i i j iij iij 3 3 3
i i i iii iii 1 1 1

现在我们需要构造合理的多项式去容斥掉后面两项

容斥掉 i i j iij iij,显然需要一个 A ( 2 x ) ∗ A ( x ) A(2x)*A(x) A(2x)A(x)

A ( 2 x ) ∗ A ( x ) A(2x)*A(x) A(2x)A(x) 含有:
i i j iij iij 一种
i i i iii iii 一种

所以让 A 3 ( x ) − 3 ∗ ( A ( 2 x ) ∗ A ( x ) ) A^3(x)-3*(A(2x)*A(x)) A3(x)3(A(2x)A(x)) , 但此时 i i i iii iii会被多减去3次,再加回来即可.

a n s = A 3 ( x ) − 3 ∗ ( A ( 2 x ) ∗ A ( x ) ) + 3 ∗ A ( 3 x ) 6 ans = \frac{A^3(x)-3*(A(2x)*A(x))+3*A(3x)}{6} ans=6A3(x)3(A(2x)A(x))+3A(3x)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值