bzoj3771 Triple(生成函数+容斥+FFT)

20 篇文章 4 订阅
16 篇文章 0 订阅

Description

我们讲一个悲伤的故事。
从前有一个贫穷的樵夫在河边砍柴。
这时候河里出现了一个水神,夺过了他的斧头,说:
“这把斧头,是不是你的?”
樵夫一看:“是啊是啊!”
水神把斧头扔在一边,又拿起一个东西问:
“这把斧头,是不是你的?”
樵夫看不清楚,但又怕真的是自己的斧头,只好又答:“是啊是啊!”
水神又把手上的东西扔在一边,拿起第三个东西问:
“这把斧头,是不是你的?”
樵夫还是看不清楚,但是他觉得再这样下去他就没法砍柴了。
于是他又一次答:“是啊是啊!真的是!”
水神看着他,哈哈大笑道:
“你看看你现在的样子,真是丑陋!”
之后就消失了。
樵夫觉得很坑爹,他今天不仅没有砍到柴,还丢了一把斧头给那个水神。
于是他准备回家换一把斧头。
回家之后他才发现真正坑爹的事情才刚开始。
水神拿着的的确是他的斧头。
但是不一定是他拿出去的那把,还有可能是水神不知道怎么偷偷从他家里拿走的。
换句话说,水神可能拿走了他的一把,两把或者三把斧头。
樵夫觉得今天真是倒霉透了,但不管怎么样日子还得过。
他想统计他的损失。
樵夫的每一把斧头都有一个价值,不同斧头的价值不同。总损失就是丢掉的斧头价值和。
他想对于每个可能的总损失,计算有几种可能的方案。
注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视为一种方案。拿走三把斧头时,(a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)视为一种方案。

Input

第一行是整数N,表示有N把斧头。
接下来n行升序输入N个数字Ai,表示每把斧头的价值。

Output

若干行,按升序对于所有可能的总损失输出一行x y,x为损失值,y为方案数。

Sample Input

4
4
5
6
7

Sample Output

4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1

样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.

HINT

所有数据满足:Ai<=40000


[ Submit][ Status][ Discuss]



分析:
听说要用到生成函数?(生成函数好难!!!)

我们要构造易个生成函数,形式如下:
A(x)=a01+a1x+a2x2+a3x3+... A ( x ) = a 0 1 + a 1 x + a 2 x 2 + a 3 x 3 + . . .
其中 ai a i 表示数字i出现的次数
也就说,如果有价值为x的物品,则 ax=1 a x = 1

我们经常用生成函数解决如下问题:

求装有苹果,香蕉,橘子和梨的果篮的数量hn,
其中在每个果篮中苹果数是偶数,香蕉数是5的倍数,橘子最多拿4个,梨要么不拿,要么只能拿一个

答案:
这里写图片描述

资料上,称这个问题为n组合问题

选择1,2,3把斧子的情况,需要分别计算
下面我们就先分析选3把斧子的情况:

那么我们还是可以故伎重演:
我们把樵夫拥有的斧子复制成三份,这样我们就有了三堆斧子
我们先简单的认为,取斧子就是从这三堆中每堆各取一个
那么答案显然是: A(x)A(x)A(x)=A3(x) A ( x ) ∗ A ( x ) ∗ A ( x ) = A 3 ( x )

这里涉及到了生成函数的一个小定理:
S S 是多重集合{n1·a1,n2·a2,...,nk·ak} hn h n S S n排列数,则 hn h n 的生成函数为:
g(x)=fn1(x)fn2(x)...fnk(x) g ( x ) = f n 1 ( x ) f n 2 ( x ) . . . f n k ( x )

但是这样选可能存在有一个东西选了两次或者选了三次的方案数,
要把ta们减去才能求出恰好选了三个不重复的东西的方案数

对于一个物品重复选了两次的情况,我们可以在生成函数中强制选择ta两次:
对于一个价值为i的物品, a2i=1 a 2 i = 1
这样得到的生产函数,我们设为 B(x) B ( x )
那么 B(x)A(x) B ( x ) ∗ A ( x ) 就是一个物品重复选择两次的方案数

对于一个物品重复选择三次的情况,我们构造生成函数 C(x) C ( x )
对于一个价值为 i i 的物品,a3i=1

接下来就是容斥的过程

我们看一下最开始得到的选3把斧子的答案: A(x)A(x)A(x)=A3(x) A ( x ) ∗ A ( x ) ∗ A ( x ) = A 3 ( x )
我们在解释这个式子的时候,直接把斧子复制成了三份
所以我们选的第一把斧子,第二把斧子,第三把斧子,ta们之间是没有关系的
也就是说, A3(x) A 3 ( x ) 中会有这样的情况:
(a,a,a),(a,a,b),(a,b,a),(b,a,a) ( a , a , a ) , ( a , a , b ) , ( a , b , a ) , ( b , a , a )
这些都是有一把斧子重复选了两次的情况

B(x)A(x) B ( x ) ∗ A ( x ) 就是一个物品重复选择两次的方案数
也就是说, B(x)A(x) B ( x ) ∗ A ( x ) 中的情况都是这样的: (a,a,a),(a,a,b) ( a , a , a ) , ( a , a , b )

A3(x) A 3 ( x ) 中,组合 (a,a,b) ( a , a , b ) 出现了三次, (a,a,a) ( a , a , a ) 出现了一次
如果 A3(x)3B(x) A 3 ( x ) − 3 ∗ B ( x ) ,我们就可以去掉形如 (a,a,b) ( a , a , b ) 的情况
但是形如 (a,a,a) ( a , a , a ) 的情况我们还是多减了两次,所以我们还要加回来
A3(x)3B(x)A(x)+2C(x) A 3 ( x ) − 3 ∗ B ( x ) ∗ A ( x ) + 2 ∗ C ( x )

然而,我们用生成函数计算的排列的方案数

因为我们还是默认了有第一把斧子,第二把斧子,第三把斧子
所以最后的答案需要除以6:

A3(x)3B(x)A(x)+2C(x)6 A 3 ( x ) − 3 ∗ B ( x ) ∗ A ( x ) + 2 ∗ C ( x ) 6

以上就是选三把斧子的情况

依次类推,最后的答案:

A3(x)3B(x)A(x)+2C(x)6+A2(x)B(x)2+A(x) A 3 ( x ) − 3 ∗ B ( x ) ∗ A ( x ) + 2 ∗ C ( x ) 6 + A 2 ( x ) − B ( x ) 2 + A ( x )

生成函数的卷积可以用FFT加速

tip

感觉之前对于生成函数有点曲解,其实生成函数计算的也是某种程度上的“排列数”
就像我们经常看到的生成函数例题:

hn h n 为方程: e1+e2+e3+e4=n e 1 + e 2 + e 3 + e 4 = n 的非负整数解的个数

解:生成函数,显然, e1,e2,e3,e4 e 1 , e 2 , e 3 , e 4 之间是有潜在顺序的

注意fn的大小: maxnum32 m a x n u m ∗ 3 ∗ 2 (因为C的大小就有 maxnum3 m a x n u m ∗ 3 ,还要乘)
最后的答案要开ll

#include<bits/stdc++.h>
#define ll long long

using namespace std;

const double pi=acos(-1.0);
const int N=400010;
struct node{
    double x,y;
    node (double xx=0,double yy=0) {
        x=xx;y=yy;
    }
};
node A[N],B[N],C[N],o[N],_o[N];
int n,fn;

node operator +(const node &a,const node &b) {return node(a.x+b.x,a.y+b.y);}
node operator -(const node &a,const node &b) {return node(a.x-b.x,a.y-b.y);}
node operator *(const node &a,const node &b) {return node(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
node operator /(const node &a,const double &b) {return node(a.x/b,a.y/b);}

void init(int n) {
    for (int i=0;i<=n;i++) {
        o[i]=node(cos(2.0*i*pi/n),sin(2.0*i*pi/n));
        _o[i]=node(cos(2.0*i*pi/n),-sin(2.0*i*pi/n));   //共轭 
    }
}

void FFT(int n,node *a,node *w) {
    int i,j=0,k;
    for (i=0;i<n;i++) {
        if (i>j) swap(a[i],a[j]);
        for (int l=n>>1;(j^=l)<l;l>>=1);
    }
    for (i=2;i<=n;i<<=1) {
        int m=i>>1;
        for (j=0;j<n;j+=i) 
            for (k=0;k<m;k++) {
                node z=a[j+k+m]*w[n/i*k];
                a[j+k+m]=a[j+k]-z;
                a[j+k]=a[j+k]+z;
            }
    }
}

int main()
{
    scanf("%d",&n);
    int mx=0;
    for (int i=1;i<=n;i++) {
        int x;
        scanf("%d",&x);
        A[x].x++; B[x*2].x++; C[3*x].x++;
        mx=max(mx,3*x);
    }

    fn=1;
    while (fn<=mx+mx) fn<<=1;

    init(fn);
    FFT(fn,A,o);
    FFT(fn,B,o);
    FFT(fn,C,o);

    node a(6.0,0),b(3.0,0),c(2.0,0);     //复数运算 
    for (int i=0;i<=fn;i++) 
        A[i]=(A[i]*A[i]*A[i]-b*A[i]*B[i]+c*C[i])/6.0
            +(A[i]*A[i]-B[i])/2.0+A[i]; 

    FFT(fn,A,_o);
    for (int i=1;i<=mx*2;i++) {
        ll ans=(ll)(A[i].x/fn+0.5);
        if (ans) printf("%d %lld\n",i,ans);
    }

    return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值