- 博客(475)
- 资源 (15)
- 问答 (1)
- 收藏
- 关注

原创 GEE:k-fold交叉验证(输出每折的混淆矩阵、总体精度、用户精度、生产精度、Kappa系数)
本文将介绍如何使用 Google Earth Engine(GEE)平台进行土地覆盖分类,并采用随机森林分类器和K折交叉验证来评估模型性能。整个流程包括卫星影像预处理、纹理与光谱特征提取以及模型性能评估。结果输出每折的总体精度、用户精度、生产精度、Kappa系数以及混淆矩阵。
2025-02-12 01:15:00
216
1

原创 GEE:根据距离(分辨率)对矢量边界进行分块
CSDN@_养乐多_本文记录了在 Google Earth Engine (GEE) 平台上按照指定分辨率对矢量边界进行分块的代码。
2025-01-17 21:18:06
304

原创 GEE:CCDC 分类组件,对每个分段进行分类
本文将解释如何在谷歌地球引擎(Google Earth Engine,GEE)平台上使用 CCDC 的分类组件 API 对 CCDC 分割的每一段时序模型进行分类。本实验分了水体、森林和其他用地。
2024-12-07 17:00:16
643
1

原创 GEE:连续变化检测 CCDC 提取断点信息(干扰时间、干扰幅度、干扰次数)
本文将介绍在 Google Earth Engine (GEE) 平台上连续变化检测与分类(Continuous Change Detection and Classification, CCDC)提取扰动时间、干扰幅度、干扰次数信息,并下载到本地的代码。
2024-09-15 18:30:30
1146

原创 GEE:连续变化检测与分类(Continuous Change Detection and Classification, CCDC)教程
本文将分别介绍连续变化检测与分类(Continuous Change Detection and Classification, CCDC)算法。通过本文,你将学习如何运行 CCD 算法、解释其输出结果以及可视化系数和变化信息,以及学会使用 CCDC 进行分类。注意,本文是一个目录,通过超链接可以访问其他具体的内容。
2024-09-15 17:01:15
2437
7

原创 GEE:基于GEDI-4A 级(L4A)数据和机器学习方法预测地上生物量密度(AGBD;单位为 Mg/ha)
CSDN@_养乐多_本文将介绍在 Google Earth Engine (GEE)平台上使用GEDI-4A 级(L4A)数据和机器学习方法(随机森林回归/CART/最小距离/梯度提升树)预测地上生物量密度(AGBD;单位为 Mg/ha)的方法和代码。
2024-04-10 07:00:00
1998
3

原创 GEE:CART(Classification and Regression Trees)回归教程(样本点、特征添加、训练、精度、参数优化)
本文将介绍在Google Earth Engine (GEE)平台上进行CART(Classification and Regression Trees)回归的方法和代码,其中包括样本点格式介绍,加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),训练和应用回归模型,优化回归算法的参数(绘制最优参数分布图)等步骤的方法和代码。
2024-02-13 00:36:18
1018

原创 GEE:随机森林回归器投票方法的优化与修改
CSDN@_养乐多_本文将介绍 GEE 中对随机森林回归结果的投票方法的修改和优化,以帮助大家熟悉 GEE 上的关键API。
2024-01-21 14:50:15
391

原创 GEE:机器学习分类中每个类别的概率图像可视化
CSDN@_养乐多_本文将介绍在 Google Earth Engine(GEE) 中应用机器学习分类器进行多分类时,可视化每个类别的分类概率图像。
2024-01-16 20:18:24
761
8

原创 GEE:随机森林回归预测教程(样本点、特征添加、训练、精度、参数优化、贡献度)
CSDN@_养乐多_本文将介绍在Google Earth Engine (GEE)平台上进行随机森林回归预测的方法和代码,其中包括样本点格式介绍,加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),训练和应用随机森林回归模型,优化随机森林回归算法的参数(绘制最优参数分布图),打印各个变量特征的贡献度(排序特征贡献度,并绘制柱状图)等步骤的方法和代码。本教程可以应用于多种分类场景,包括土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等多种场景。
2024-01-16 18:15:01
4009
9

原创 GEE:分块处理以降低内存压力
CSDN@_养乐多_本文将介绍如何通过分块处理优化GEE中矢量数据的操作的 API,以提高效率、降低资源消耗。
2024-01-04 20:28:25
3677
56

原创 GEE:如何解决随机森林分类器的确定性伪随机性?使得每次运行结果(OA、Kappa和混淆矩阵等)不一样
CSDN@_养乐多_本文将介绍如何在GEE中增加随机森林分类器的变异性,使得每次运行的结果都不同,从而更好地理解和优化土地利用分类的结果。
2023-12-21 16:00:22
2221

原创 GEE:使用网格搜索法(Grid Search)求机器学习算法的最优参数或者参数组合
CSDN@_养乐多_本文记录了在 Google Earth Engine(GEE)平台中,计算机器学习分类算法最优参数的代码,其中包括单一参数的最优和不同参数组合的最优。使用的最优参数计算方法是网格搜索法(Grid Search),GEE 平台上并没有现成的网格搜索法 API,因此,本文在 GEE 上手动实现了网格搜索法以求最优参数。并以 kNN 最近邻分类方法为例,分别计算了在不同最近邻数量、搜索方法、距离度量方法和不用参数组合下的分类精度。
2023-12-12 15:52:02
2232
11

原创 GEE:梯度卷积
CSDN@_养乐多_本文将介绍在 Google Earth Engine(GEE)平台上,进行梯度卷积操作的代码框架、核心函数和多种卷积核,比如 Roberts、Prewitt、Sobel、各向同性算子、Compass算子、拉普拉斯算子、不同方向线性检测算子等。结果如下图所示,
2023-12-03 15:00:35
896

原创 GEE:基于 Landsat 遥感数据计算的 kNDVI 下载 APP
CSDN@_养乐多_本文记录了在Google Earth Engine(GEE)平台中,使用 Landsat 遥感数据计算并且下载 kNDVI 的应用 APP 链接,并介绍该 APP 的使用方法和步骤。该APP可以为用户展示 NDVI 和 kNDVI 的遥感影像,下载研究区 kNDVI 数据,识别鼠标点击位置 kNDVI 值,下载 kNDVI 数据。
2023-11-24 20:09:46
1731
13

原创 GEE:计算多个流域逐日的降水量均值,并将流域名、降水量、时间等属性下载至csv
_养乐多_现在我有多个流域的矢量边界,想求每个流域某段时间每天的降水量均值,并想要将降水量均值、时间、流域名称下载到本地,以csv格式保存。本文记录了解决以上需求的代码。结果如下图所示,如图所示,本文代码可以计算珠江流域每日降水量均值,并能下载到csv中,以便后续分析和使用。代码可以迁移至其他数据,也可以修改成逐月,逐年的计算。
2023-11-02 19:42:25
921

原创 python:使用卷积神经网络(CNN)进行回归预测
本文详细记录了从Excel或者csv中读取用于训练卷积神经网络(CNN)模型的数据,包括多个自变量和1个因变量数据,以供卷积神经网络模型的训练。随后,我们将测试数据集应用于该CNN模型,进行回归预测和分析。
2023-10-12 21:20:17
6731

原创 Vision Transformer (ViT):图像分块、图像块嵌入、类别标记、QKV矩阵与自注意力机制的解析
本文将介绍Vision Transformers (ViT)中的关键点。包括图像分块(Image Patching)、图像块嵌入(Patch Embedding)、类别标记(class_token)、QKV矩阵计算过程、余弦相似度(cosine similarity)、Softmax、自注意力机制等概念。主要介绍QKV矩阵计算过程。
2023-07-29 19:47:36
19494
9

原创 GEE:线性插值方法填补去云空洞——以 MCD43A4 和 NDVI 时间序列为例
本文将介绍使用GEE平台上的数据集“MODIS/006/MCD43A4”,计算NDVI时间序列,并对去云后产生的空洞采用线性插值的方法进行填补,以获得更精细的空间分辨率和连续的时间序列数据。
2023-07-20 22:40:33
2213
4

原创 GEE:多元线性回归
养乐多_本文记录了在NDVI、EVI和LAI作为自变量,NPP作为因变量的条件下,使用linearRegression函数进行线性回归分析的代码,代码在Google Earth Engine(GEE)平台上实现。具体而言,该函数可以计算NDVI、EVI和LAI对NPP的影响关系。通过线性回归分析,可以了解NDVI、EVI和LAI与NPP之间的关系,并获得每个自变量(NDVI、EVI和LAI)对应的因变量(NPP)的系数。系数表示自变量对因变量的影响程度,正值表示正相关,负值表示负相关。
2023-07-11 21:14:32
2495
1

原创 GEE:线性插值方法填补去云空洞——以 Landsat 和 NDVI 为例
养乐多_本文将介绍如何使用Google Earth Engine(GEE)平台提取特定地区的归一化植被指数(NDVI)并进行插值处理,以获得更精细的空间分辨率和连续的时间序列数据。
2023-07-08 14:43:23
3874
5

原创 python:使用Scikit-image库对单波段遥感图像做特征提取
养乐多_本文将介绍使用Scikit-image库对单波段遥感图像做特征提取的代码。方法包括:颜色直方图特征提取(histogram),纹理特征提取(texture) ,形状特征提取(morphology) ,边缘检测特征提取(edges) ,角点检测特征提取(corner) ,尺度空间特征提取(scale-space) ,小波变换特征提取(wavelet) ,梯度特征提取(gradient),傅里叶变换特征提取(fourier),形态学轮廓特征提取(contour)等。
2023-06-20 15:27:03
2620

原创 GEE:面对对象(斑块/超像素)尺度的随机森林分类教程
本文将介绍在Google Earth Engine(GEE)平台上进行面向对象随机森林分类的方法和代码。面向对象随机森林分类是一种强大的分类方法,通过将遥感影像数据聚合成具有语义的对象,结合随机森林算法进行分类,可以得到准确且可解释的土地利用/覆盖分类结果。
2023-06-19 12:19:55
6176
31

原创 GEE:对Sentinel-2遥感影像进行处理,水体提取与可视化
本文介绍了通过Google Earth Engine平台,并使用哨兵数据提取水体掩膜的方法和代码。通过记录代码、裁剪和去除云等处理步骤,最终得到具有水体掩膜的影像,并进行可视化和导出。这种方法基于归一化水体指数(NDWI)和OTSU阈值计算技术,无需复杂的图像处理算法,适用于快速获取水体信息的需求。
2023-05-30 15:09:04
12055
37

原创 GEE:基于变异系数法的遥感生态指数(RSEI)计算
本文记录了基于变异系数法计算 Risk-Screening Environmental Indicators (RSEI) 的方法和代码。使用 变异系数法计算权重来代替PCA方法计算权重,根据权重计算综合指标。本文也记录了使用landsat-8数据计算LST、NDVI、NDBSI、WET四个指标的代码。结果如下,
2023-05-07 15:45:35
2707
3

原创 GEE:MODIS计算遥感指数(NDVI、BSI、NDSI、EVI、LSWI、SIPI、EBI等)
使用MODIS数据集计算和可视化几种植被指数,主要包括,NDVI、BSI、NDSI、EVI、LSWI、SIPI、EBI等。
2023-04-29 18:02:52
5686

原创 GEE:使用 VCT(Vegetation Change Tracker)算法森林进行时序变化检测分析
VCT 算法是一种监督式的变化检测方法,适用于地表覆盖类型变化检测,其核心思想是通过计算变化幅度来确定是否发生了变化。该算法首先将多年影像进行融合,然后对影像进行一系列的预处理,得到一组指标,比如归一化植被指数(NDVI)、反射率等。接着,利用一个训练样本集对每个时期的特征进行分类,得出每个时期的植被类型。最后,比较不同时期的植被类型,通过计算变化幅度来确定是否发生了变化。
2023-04-12 21:21:19
2034
9

原创 GEE:使用 CCDC 算法进行连续变化检测和分类
连续变化检测和分类(CCDC)算法是一种广泛应用于遥感数据分析的方法,可以用于检测土地覆盖变化、农作物生长状态的变化以及水资源的变化等。Google Earth Engine是一个强大的云端平台,提供了丰富的遥感数据和工具,可以用于执行各种类型的遥感数据分析。本文将介绍如何使用Google Earth Engine的CCDC算法进行连续变化检测和分类。
2023-04-12 13:01:24
4819
17

原创 GEE:Sen+Mann-Kendall(MK)趋势检验教程
在这篇博客中,我们将介绍如何在Google Earth Engine(GEE)平台上使用Sen+Mann-Kendall(MK)趋势检验进行趋势分析。Sen+Mann-Kendall(MK)趋势检验是一种经典的非参数统计方法,它被广泛应用于趋势分析。这种方法可以检测时间序列中的变化趋势,并且不需要对数据进行任何先验假设。
2023-04-09 13:46:19
6284
5

原创 GEE:根据时间序列的统计值合成影像(标准差、众数、百分位数、最大值、最小值、均值、中值、方差、像素和、像素数)
在地球引擎(Google Earth Engine,简称GEE)平台上,我们可以使用时间序列数据来生成合成影像。时间序列数据是一组按时间排序的数据,可以是遥感影像、气象数据等等。利用时间序列数据,我们可以分析出不同时间点上数据的变化情况,进而合成一张更加全面、准确的影像。下面我们来介绍如何在GEE平台上根据时间序列的统计值合成影像,并介绍各种统计值的计算代码。结果如下图所示,
2023-04-09 11:57:58
6105
10

原创 GEE:植被生长季节开始和结束时间DOY(MCD12Q2数据集Greenup_1 和 Dormancy_1波段)
本文将介绍Google Earth Engine(GEE)平台上的MODIS/006/MCD12Q2数据集的Greenup_1和Dormancy_1波段的数据转换方法和代码。数据的像素值是从1970年开始到至今的天数,需要转换到指定年份的Day of Year(DOY)才可以使用,本文记录了转换方法和代码。MODIS/006/MCD12Q2数据集的Greenup_1和Dormancy_1波段分别反映了地表植被的绿度增长时间和休眠时间。
2023-04-06 17:18:47
3098
15

原创 GEE:随机森林分类教程(样本制作、特征添加、训练、精度、参数优化、贡献度、统计面积)
本文将介绍在Google Earth Engine (GEE)平台上进行随机森林分类的方法和代码,其中包括制作样本点教程(本地、在线和本地在线混合制作样本点,合并样本点等),加入特征变量,运行随机森林分类器教程,计算随机森林分类结果的精度,优化随机森林分类算法的参数,打印各个变量特征的贡献度等步骤的方法和代码。本教程可以应用于多种分类场景,包括土地利用分类、种植区提取(大蒜、小麦、玉米等)、局部气候区分类、植被分类等多种场景。
2023-04-04 22:16:17
13410
116

原创 GEE:克里金 Kriging 空间插值(以陕西省2013年生物量为例)
本文记录了在Google Earth Engine(GEE)平台上进行 Kriging 插值的介绍和代码案例。Kriging是一种空间插值技术,其基本思想是通过已知的样本点对未知位置上的数据进行估计。在GEE中,Kriging插值方法被实现为ee.Image.interpolate()函数的一个选项。该函数接受一个包含样本点和它们的值的ee.FeatureCollection对象和一个ee.Image对象作为输入,并返回一个插值后的图像。
2023-03-29 21:10:49
1948
5

原创 GEE:VNP22Q2数据集上的物候波段转换成DOY
本文记录了对 VNP22Q2 数据预处理的方法和代码,通过该数据集,可以得到全球地区的作物物候指标(GLSP),包括植被绿度增加的开始时间,衰退时间和生长季长度等信息(SOS、EOS、LOS等),还包含绿度的最大最小值所在的时间。但是数据并不能直接使用,需要通过规则栅格计算得到。数据以DOY(Day of Year)表示时间。本文将介绍对该数据集的每一副影像做筛选、裁剪、数值计算、下载的方法和代码。
2023-03-19 18:22:45
1051
13

原创 GEE:计算非水体概率影像(水体淹没次数)
本文记录了在GEE平台上使用哨兵数据计算沿海地区非水体概率图像的计算方法和代码。基于像素,概率范围0-100。首先使用哨兵数据(s2)和大津算法(OTSU)计算的水体指数阈值来提取水体,然后计算研究区非水体像素在时间段内出现的概率。
2023-03-06 20:50:23
1717
7

原创 GEE:样本点选择教程
本文记录了在Google Earth Engine(GEE)平台上标记样本的技巧和代码脚本,样本点可以用来做土地利用分类、植被提取、水藻提取、冰川提取、农作物提取等应用中。可以应用到的方法包括随机森林(RF)分类,支持矢量机(SVM)分类,决策树分类等机器学习分类方法中。
2023-02-23 11:10:49
9849
25

原创 GEE:按不同时间合成影像集合(指定日期、按周、按月、按年)函数总结
在处理时间序列影像数据时,按照不同的时间间隔进行合成是常见的需求。比如,从设置的起始日期开始,每隔10天合成1个新影像,最终得到一个新的影像集合;又比如,将1年中的每个月的影像合成,得到12幅新的影像。为了方便代码编写,本文将按指定天数间隔、按周、按月、按年合成影像集合的过程封装成了函数。这样,研究者在实际编写代码时,只需调用相应的函数并提供起始日期、结束日期以及影像集合,就能轻松地获得合成后的影像集合。这种封装提高了代码的可读性和可维护性,使时间序列数据处理更加高效。
2023-02-09 20:18:08
4201
5
PointNet中出现错误的小文件render_balls_so.dll
2022-09-02
GEE中的Penman-Monteith-Leuning蒸散发建模引擎.zip
2021-11-17
地理探测器软件、数据、使用教程.zip
2021-09-02
UNAVCO Research Data下载和使用说明(美国卫星导航系统与地壳形变观测研究大学联盟).pdf
2021-09-01
Landsat_column_number_mode1.zip
2021-03-30
SegmentAnything模型能否分割多波段遥感影像
2023-05-22
TA创建的收藏夹 TA关注的收藏夹
TA关注的人