python:随机森林分类器的性能评估(决策树数量的影响)

作者:CSDN @ _养乐多_

随机森林(Random Forest)是一种强大的机器学习算法,常用于分类和回归任务。它由多个决策树构成,通过集成学习的方式进行预测。在本篇博客中,我们将探讨随机森林分类器在不同决策树数量下的性能,并绘制相应的图表进行可视化分析。OOB误差,0被误判为1时产生的误差,和1被误判为0时产生的误差。

在这里插入图片描述



数据集和模型

首先,我们使用一个示例数据集进行实验。这个数据集包含两个特征和两个类别,共有100个样本。我们将使用scikit-learn库来构建和训练随机森林分类器,并评估其性能。

OOB误差的变化

我们希望观察随机森林分类器在不同决策树数量下的Out-of-Bag (OOB)误差的变化。OOB误差是一种通过在训练过程中未使用的样本进行评估的方法,可以提供对模型性能的估计。

我们从决策树数量为1开始,逐步增加决策树的数量,直到300。对于每个数量&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值