python:使用随机森林回归模型进行数据预测

本文详细介绍了如何使用Python的pandas、numpy和sklearn库,结合随机森林回归模型进行数据预测。从数据准备、模型训练、性能评估到可视化及新数据预测,一步步演示整个流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:CSDN @ _养乐多_

在本篇博客中,我们将介绍如何使用Python编程语言和一些主要的数据科学工具(pandas、numpy、sklearn等)来进行数据预测。我们将使用随机森林回归模型,该模型是一种强大的机器学习算法,适用于回归问题,例如预测连续性变量的值。我们将演示如何准备数据,训练模型,评估模型性能,以及如何使用模型进行新数据的预测。

具体流程:首先,使用从csv中读取的样本数据训练随机森林模型,并进行模型性能评价。其次,对未知标签的数据进行预测,并保存结果到csv。

在这里插入图片描述



一、完整示例代码

首先,直接上示例代码,使用样本数据训练模型,并进行模型性能评价。其次,对未知标签的数据进行预测,并保存结果到csv。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值