数据压缩7 | DPCM 压缩系统的实现和分析

本文详细介绍了差分预测编码调制(DPCM)的基本原理,通过横向预测实现图像编码,并计算了均方误差(MSE)和峰值信噪比(PSNR)以评估图像质量。实验结果显示,DPCM编码后的图像质量接近原始图像,且残差图像的概率分布特性有利于进一步的熵编码,从而提高压缩效率。
摘要由CSDN通过智能技术生成

一 基本原理

DPCM

DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。

本文采用横向预测。

 

MSE 均方误差 

 MSE=\frac{\sum_{i=0}^{M}\sum_{j=0}^{N}[f(i,j)-f{}'(i,j)]^{2}}{MN}

PSNR  峰值信号噪声比 

PSNR=10lg\frac{(2^{bits}-1)^{2}}{MSE}

一般来说:

  • PSNR ≥ 40dB时,图像质量非常好,接近于原图像;
  • 30dB ≤ PSNR < 40dB时,图像有可察觉的失真,但质量仍可接受;
  • 20dB ≤ PSNR < 30dB时,图像质量较差;
  • PSNR < 20dB时,图像质量已经无法接受。

二 实验代码


DPCM实现:

核心buffer:原始图像origiBuf、重建图像reconBuf、残差图像quantiBuf

 reconBuf[0] = originBuf[0];

    for (int j = 0; j < height; j++) {
        for (int i = 0; i < width; i++) {
            if (!j && !i)continue;
            pn = originBuf[j * width + i] - reconBuf[j * width + i - 1];//水平方向两个像素之差
            qn = pn / 2;//简单量化
            toPic = qn + 128;//可视化输出,将电平从-128~128提高至0~255便于显示
            toPic = toPic > 255 ? 255 : (toPic < 0 ? 0 : toPic);//防溢出
            quantiBuf[j * width + i] = toPic;//预测图像
            if (!i) //每行第一个
                reconBuf[j * width] = originBuf[j * width];//每行第一个像素的重建值即为本身
            else
                reconBuf[j * width + i] = qn * 2 + reconBuf[j * width + i - 1];//反量化加上上个像素的重建值即为当前像素的重建值
        }
    }

计算MSE,PSNR

double MSE = 0, PSNR = 0;
    for (int i = 0; i < height * width; i++)
        MSE += pow((originBuf[i] - reconBuf[i]), 2);
    MSE /= (height * width);
    PSNR = 10 * log10((255 * 255) / MSE);//8bit量化

    cout << "MSE: " << MSE << endl;
    cout << "PSNR:  " << PSNR << endl;

计算原图像、重建图像、残差图像的概率分布及可视化输出(via excel)

//计算概率分布
double fre_ori[256] = { 0 }, fre_re[256] = { 0 }, fre_q[256] = { 0 };
frequency(originBuf, height * width, fre_ori);
frequency(reconBuf, height * width, fre_re);
frequency(quantiBuf, height * width, fre_q);

//输出概率分布到csv
FILE* freout1, * freout2, * freout3;
freout1 = fopen(fre_ori_Path, "wb");
freout2 = fopen(fre_re_Path, "wb");
freout3 = fopen(fre_q_Path, "wb");
fprintf(freout1, "Symbol,Frequency\n");
fprintf(freout2, "Symbol,Frequency\n");
fprintf(freout3, "Symbol,Frequency\n");
void frequency(unsigned char* pic, int length, double* f) {
    for (int i = 0; i <= 255; i++) {
        for (int j = 0; j < length; j++) {
            if (pic[j] == i)f[i]++;
        }
        f[i] /= length;
    }
}

 三 结果及分析

以我们熟悉的Lena为例

计算得到MSE及PSNR,显而易见,由于PSNR>40dB,重建图像的质量几乎没有损失,接近于原图像。 

计算概率分布可得:

fre_ori原始图像  fre_q残差图像  fre_re重建图像

 

观察图像可知,对于原图像,概率在[0,255]内均匀分布;而残差图像集中在[120,140]区间,这对于Huffman编码来说简直是天然优势,概率较低的值用变为长码,概率较高的值编码为短码。

因此进行压缩效率的对比:

aftDPCM  DPCM后进行huffman编码                preDPCM  直接进行huffman编码

可以看到,对原图像进行预测编码后再进行huffman编码,对压缩效率的提升是巨大的。

四 完整实验代码

#include <iostream>
#include <malloc.h>
#include <math.h>
using namespace std;

void frequency(unsigned char* pic, int length, double* f);

int main(int argc,char *argv[])
{
    char* filePath, * outPath, * qPath;
    char* fre_ori_Path, * fre_re_Path, * fre_q_Path;
    int height = atoi(argv[1]);
    int width = atoi(argv[2]);
    filePath = argv[3];
    outPath = argv[4];
    qPath = argv[5];
    fre_ori_Path = argv[6];
    fre_re_Path = argv[7];
    fre_q_Path = argv[8];
    unsigned char* originBuf, * reconBuf, * quantiBuf;
    unsigned char* u, * v;
    originBuf = (unsigned char*)malloc(height * width);//原图
    reconBuf = (unsigned char*)malloc(height * width);//重建
    quantiBuf = (unsigned char*)malloc(height * width);//量化
    u = (unsigned char*)malloc(height * width / 4);
    v = (unsigned char*)malloc(height * width / 4);
 
    FILE* fp;
    fp = fopen(filePath, "rb");
    fread(originBuf, sizeof(unsigned char), height * width, fp);
    fread(u, sizeof(unsigned char), height * width / 4, fp);
    fread(v, sizeof(unsigned char), height * width / 4, fp);

    int pn,qn,toPic;


    reconBuf[0] = originBuf[0];

    for (int j = 0; j < height; j++) {
        for (int i = 0; i < width; i++) {
            if (!j && !i)continue;
            pn = originBuf[j * width + i] - reconBuf[j * width + i - 1];//水平方向两个像素之差
     //       cout << int(originBuf[j * width + i])<<" "<<int(reconBuf[j * width + i - 1]);
            qn = pn / 2;//简单量化
            toPic = qn + 128;//可视化输出,将电平从-128~128提高至0~255便于显示
            toPic = toPic > 255 ? 255 : (toPic < 0 ? 0 : toPic);//防溢出
            quantiBuf[j * width + i] = toPic;//预测图像
            if (!i) //每行第一个
                reconBuf[j * width] = originBuf[j * width];//每行第一个像素的重建值即为本身
            else
                reconBuf[j * width + i] = qn * 2 + reconBuf[j * width + i - 1];//反量化加上上个像素的重建值即为当前像素的重建值
        }
    }

    //计算MSE PSNR
    double MSE = 0, PSNR = 0;
    for (int i = 0; i < height * width; i++)
        MSE += pow((originBuf[i] - reconBuf[i]), 2);
    MSE /= (height * width);
    PSNR = 10 * log10((255 * 255) / MSE);//8bit量化

    cout << "MSE: " << MSE << endl;
    cout << "PSNR:  " << PSNR << endl;

    //计算概率分布
    double fre_ori[256] = { 0 }, fre_re[256] = { 0 }, fre_q[256] = { 0 };
    frequency(originBuf, height * width, fre_ori);
    frequency(reconBuf, height * width, fre_re);
    frequency(quantiBuf, height * width, fre_q);

    //输出概率分布到csv
    FILE* freout1, * freout2, * freout3;
    freout1 = fopen(fre_ori_Path, "wb");
    freout2 = fopen(fre_re_Path, "wb");
    freout3 = fopen(fre_q_Path, "wb");
    fprintf(freout1, "Symbol,Frequency\n");
    fprintf(freout2, "Symbol,Frequency\n");
    fprintf(freout3, "Symbol,Frequency\n");

    for (int i = 0; i < 256; i++) {
        fprintf(freout1, "%-3d,%-8.2e\n", i, fre_ori[i]);
        fprintf(freout2, "%-3d,%-8.2e\n", i, fre_re[i]);
        fprintf(freout3, "%-3d,%-8.2e\n", i, fre_q[i]);
    }


    FILE* fout, * fq;
    fout = fopen(outPath, "wb");
    fq = fopen(qPath, "wb");
    fwrite(reconBuf, sizeof(unsigned char), width * height, fout);
    fwrite(u, sizeof(unsigned char), width * height / 4, fout);
    fwrite(v, sizeof(unsigned char), width * height / 4, fout);

    fwrite(quantiBuf, sizeof(unsigned char), width * height, fq);
    fwrite(u, sizeof(unsigned char), width * height / 4, fq);
    fwrite(v, sizeof(unsigned char), width * height / 4, fq);


    return 0;

}

void frequency(unsigned char* pic, int length, double* f) {
    for (int i = 0; i <= 255; i++) {
        for (int j = 0; j < length; j++) {
            if (pic[j] == i)f[i]++;
        }
        f[i] /= length;
    }
}

 

DPCM(差分脉冲编码调制)是一种数据压缩系统,其目的是在尽量不失真的情况下减少数据存储或传输所需的带宽。DPCM 压缩系统实现主要是在传输前对原始信号进行差分编码,将每一个样本值与它前面的样本值的差值编码传输。在解码端,将编码的差值与前一个样本值相加,得到解码后的样本值。 DPCM 压缩系统的性能取决于差分编码器的性能和采样率。通常,差分编码器需要对原始信号进行线性预测,并将其与实际样本值的差异编码。预测器的设计和参数设置是影响性能的关键因素。 DPCM 压缩系统主要有以下优点:首先,DPCM 采用差分编码,可以将一系列相邻的样本压缩成差分值,从而减少需要传输的数据量。其次,由于 DPCM 是一种有损压缩策略,可以通过控制压缩后的失真来有效地减少数据量。再者,DPCM 压缩系统计算编码速度较快,可以在硬件中实现,适用于实时视频或音频传输。 然而,DPCM 压缩系统也有一些缺点。首先,差分编码容易受到干扰和噪声的影响,从而导致误差传播和失真的增加。此外,DPCM 不适用于大多数不规则信号,如图片和文本等。 总之,DPCM 压缩系统是一种有损压缩策略,可以通过对原始信号进行差分编码来减少数据量。其性能主要取决于差分编码器的设计和采样率,适用于实时音视频传输和存储等场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值