Problem Description
小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识。
问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“美素数”,如29,本身是素数,而且2+9 = 11也是素数,所以它是美素数。
给定一个区间,你能计算出这个区间内有多少个美素数吗?
问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“美素数”,如29,本身是素数,而且2+9 = 11也是素数,所以它是美素数。
给定一个区间,你能计算出这个区间内有多少个美素数吗?
Input
第一行输入一个正整数T,表示总共有T组数据(T <= 10000)。
接下来共T行,每行输入两个整数L,R(1<= L <= R <= 1000000),表示区间的左值和右值。
接下来共T行,每行输入两个整数L,R(1<= L <= R <= 1000000),表示区间的左值和右值。
Output
对于每组数据,先输出Case数,然后输出区间内美素数的个数(包括端点值L,R)。
每组数据占一行,具体输出格式参见样例。
每组数据占一行,具体输出格式参见样例。
Sample Input
3 1 100 2 2 3 19
Sample Output
Case #1: 14 Case #2: 1 Case #3: 4
1.打表求出1到1的所有素数:用筛素数法,将每个数的倍数全部筛掉。存进数组prime[]里
2.判断是否为美素数:将这些素数各位分离并求各位之和sum,找prime[sum]是否为素数。存进数字ans[]。
3.所求区间的美素数个数=ans[right]-ans[left-1].
裸素数打表题
注意不要超时就可以了
#include <stdio.h>
#include <string.h>
const int N = 1000005;
int prime[N];
int ans[N];
void set_prime()
{
int i,j;
memset(prime,0,sizeof(prime));
memset(ans,0,sizeof(ans));
//printf("%d\n",prime[3]);
prime[0] = prime[1] = 1;
for(i = 2; i<N; i++)
{
if(prime[i])
continue;
for(j = i+i; j<N; j+=i)
prime[j] = 1;
}
}
int set_sum(int t)
{
int r,sum = 0;
while(t)
{
r = t%10;
sum+=r;
t/=10;
}
return sum;
}
void set_ans()
{
int i;
ans[0] = ans[1] = 0;
for(i = 2; i<N; i++)
{
if(!prime[i] && !prime[set_sum(i)])
ans[i] = ans[i-1]+1;
else
ans[i] = ans[i-1];
}
}
int main()
{
int T,cas = 1,l,r;
set_prime();
set_ans();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&l,&r);
printf("Case #%d: %d\n",cas++,ans[r]-ans[l-1]);
}
return 0;
}
#include<stdio.h>
#define N 1000000
int su[N]={1,1},a[N]={0};
int fcs(int n)
{
int sum=0;
while(n)
{
sum+=n%10;
n=n/10;
}
return sum;
}
void fas()
{
int n=0,i,j;
for(i=2;i<=N;i++)
{
if(su[i])
continue;
for(j=i*2;j<=N;j+=i)
su[j]=1;
}
a[0]=0;a[1]=0;
for(i=2;i<=N;i++)
{
if(!su[i]&&!su[fcs(i)])
a[i]=a[i-1]+1;
else a[i]=a[i-1];
}
}
int main()
{
int n=0,m,t,i,j,l,r;
scanf("%d",&t);
fas();
n=0;
while(t--)
{
scanf("%d%d",&l,&r);
printf("Case #%d: %d\n",++n,a[r]-a[l-1]);
}
return 0;
}