美素数

Problem Description
  小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识。
  问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“美素数”,如29,本身是素数,而且2+9 = 11也是素数,所以它是美素数。
  给定一个区间,你能计算出这个区间内有多少个美素数吗?
 

Input
第一行输入一个正整数T,表示总共有T组数据(T <= 10000)。
接下来共T行,每行输入两个整数L,R(1<= L <= R <= 1000000),表示区间的左值和右值。
 

Output
对于每组数据,先输出Case数,然后输出区间内美素数的个数(包括端点值L,R)。
每组数据占一行,具体输出格式参见样例。
 

Sample Input
  
  
3 1 100 2 2 3 19
 

Sample Output
  
  
Case #1: 14 Case #2: 1 Case #3: 4
 


 1.打表求出1到1的所有素数:用筛素数法,将每个数的倍数全部筛掉。存进数组prime[]里
2.判断是否为美素数:将这些素数各位分离并求各位之和sum,找prime[sum]是否为素数。存进数字ans[]。
3.所求区间的美素数个数=ans[right]-ans[left-1].

裸素数打表题

注意不要超时就可以了

#include <stdio.h>  
#include <string.h>  
const int N = 1000005;  
int prime[N];  
int ans[N];  
  
void set_prime()  
{  
    int i,j;  
    memset(prime,0,sizeof(prime));  
    memset(ans,0,sizeof(ans));  
    //printf("%d\n",prime[3]);  
    prime[0] = prime[1] = 1;  
    for(i = 2; i<N; i++)  
    {  
        if(prime[i])  
            continue;  
        for(j = i+i; j<N; j+=i)  
            prime[j] = 1;  
    }  
}  
  
int set_sum(int t)  
{  
    int r,sum = 0;  
    while(t)  
    {  
        r = t%10;  
        sum+=r;  
        t/=10;  
    }  
    return sum;  
}  
  
void set_ans()  
{  
    int i;  
    ans[0] = ans[1] = 0;  
    for(i = 2; i<N; i++)  
    {  
        if(!prime[i] && !prime[set_sum(i)])  
            ans[i] = ans[i-1]+1;  
        else  
            ans[i] = ans[i-1];  
    }  
}  
  
int main()  
{  
    int T,cas = 1,l,r;  
    set_prime();  
    set_ans();  
    scanf("%d",&T);  
    while(T--)  
    {  
        scanf("%d%d",&l,&r);  
        printf("Case #%d: %d\n",cas++,ans[r]-ans[l-1]);  
    }  
  
    return 0;  
}  
#include<stdio.h>
#define N 1000000
int su[N]={1,1},a[N]={0};
int fcs(int n)
{
int sum=0;
while(n)
{
sum+=n%10;
n=n/10;
}
return sum;
}
void fas()
{
int n=0,i,j;
for(i=2;i<=N;i++)
{
if(su[i])
continue;
for(j=i*2;j<=N;j+=i)
 su[j]=1;
    }
a[0]=0;a[1]=0;
for(i=2;i<=N;i++)
{
    if(!su[i]&&!su[fcs(i)])
    a[i]=a[i-1]+1;
  else a[i]=a[i-1];
    }

}
int main()
{
int n=0,m,t,i,j,l,r;
scanf("%d",&t);
fas();
n=0;
while(t--)
{
scanf("%d%d",&l,&r);
printf("Case #%d: %d\n",++n,a[r]-a[l-1]);

}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值