Time Limit: 2 second(s) | Memory Limit: 32 MB |
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input | Output for Sample Input |
5 5 10 8 10 22 3 1000000 2 0 100 | Case 1: 3 Case 2: 5 Case 3: 45 Case 4: 18488885 Case 5: 1 |
题意:求N!在K进制下的位数
算N!在K进制下的位数,即计算 [ log(1)+log(2)+...+log(N) ]+1 其中log的底数都是K。在此要先了解计算机是怎么表示对数的。计算机的log默认为自然对数,即以e为底。 或者log10(a), 就是以10为底,其他的都得通过换底公式来表示。
loga(b)=logc(b)/logc(a)
N!在十进制下的位数就是 log10 ( N ! ) +1 ( 自己找个数验证 ) ,N!在K进制下的位数就是 logK( N ! ) +1 ( K 为底数 ),而计算机不能直接以K为底求对数。所以运用换底公式, logK( N ! ) = log( K ) / log ( N!) ,注意,等号右边的 log 都是默认以e为底。
正式进入解题了,题目给出N,K,如果每一次输入N,K 都要计算 N!的话,那就有很大的开销,开销为O(N)。
所以可以采取一种办法,先预处理,用double数组 sum[ 1000000 ] 把 log ( N ! ) 存起来。数组 应该够的,需要说的是定义大数组尽量放到外面,这样比较妥当,要不运行时会出错。
用sum [ i ] 表示 log(1 )+log(2)+。。。+log(i) , 这样时间开始时花费O(N),之后每次花费O(1),等输入的时候用换底公式处理一下就得到答案了。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
double a[1000005];
int main()
{
int t;
scanf("%d",&t);
int flag=1;
a[1]=0.0;
for(int i=1;i<=1000005;i++)//题目中已给了这个关系
a[i]+=a[i-1]+log(i);
while(t--)
{
LL n,base;
double sum=0;
scanf("%lld%lld",&n,&base);
sum=a[n]/log(base);
LL ans=sum;
printf("Case %d: %lld\n",flag++,ans+1);
}
return 0;
}