1、高可用
在 HBase 中 Hmaster 负责监控 RegionServer 的生命周期,均衡 RegionServer 的负载,如果Hmaster 挂掉了,那么整个 HBase 集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以 HBase 支持对 Hmaster 的高可用配置。
1 关闭 HBase 集群(如果没有开启则跳过此步)
bin/stop-hbase.sh
2 在 conf 目录下创建 backup-masters 文件
touch conf/backup-masters
3 在 backup-masters 文件中配置高可用 HMaster 节点
echo hadoop102 > conf/backup-masters
4 将整个 conf 目录 scp 到其他节点
xsync conf/backup-masters
5 打开页面测试查看
0.98 版本之前: http://hadoop102:60010
0.98 版本之后: http://hadoop102:16010
2、 Hadoop 的通用性优化
1 NameNode 元数据备份使用 SSD
2 定时备份 NameNode 上的元数据
每小时或者每天备份,如果数据极其重要,可以 5~10 分钟备份一次。备份可以通过定时任务复制元数据目录即可。
3 为 NameNode 指定多个元数据目录
使用 dfs.name.dir 或者 dfs.namenode.name.dir 指定。这样可以提供元数据的冗余和健壮性,以免发生故障。
4 NameNode 的 dir 自恢复
设置 dfs.namenode.name.dir.restore 为 true,允许尝试恢复之前失败的 dfs.namenode.name.dir目录,在创建 checkpoint 时做此尝试,如果设置了多个磁盘,建议允许。
5 HDFS 保证 RPC 调用会有较多的线程数
hdfs-site.xml
属性: dfs.namenode.handler.count
解释:该属性是 NameNode 服务默认线程数,的默认值是 10,根据机器的可用内存可以调
整为 50~100
属性: dfs.datanode.handler.count
解释:该属性默认值为 10,是 DataNode 的处理线程数,如果 HDFS 客户端程序读写请求比
较多,可以调高到 15~20,设置的值越大,内存消耗越多,不要调整的过高,一般业务中,
5~10 即可。
6 HDFS 副本数的调整
hdfs-site.xml
属性: dfs.replication
解释:如果数据量巨大,且不是非常之重要,可以调整为 2~3,如果数据非常之重要,可以
调整为 3~5。
7 HDFS 文件块大小的调整
hdfs-site.xml
属性: dfs.blocksize
解释:块大小定义,该属性应该根据存储的大量的单个文件大小来设置,如果大量的单个文
件都小于 100M,建议设置成 64M 块大小,对于大于 100M 或者达到 GB 的这种情况,建议
设置成 256M,一般设置范围波动在 64M~256M 之间。
8 MapReduce Job 任务服务线程数调整
mapred-site.xml
属性: mapreduce.jobtracker.handler.count
解释:该属性是 Job 任务线程数,默认值是 10,根据机器的可用内存可以调整为 50~100
9 Http 服务器工作线程数
mapred-site.xml
属性: mapreduce.tasktracker.http.threads
解释:定义 HTTP 服务器工作线程数,默认值为 40,对于大集群可以调整到 80~100
10 文件排序合并优化
mapred-site.xml
属性: mapreduce.task.io.sort.factor
解释:文件排序时同时合并的数据流的数量,这也定义了同时打开文件的个数,默认值为
10,如果调高该参数,可以明显减少磁盘 IO,即减少文件读取的次数。
11 设置任务并发
mapred-site.xml
属性: mapreduce.map.speculative
解释:该属性可以设置任务是否可以并发执行,如果任务多而小,该属性设置为 true 可以
明显加快任务执行效率,但是对于延迟非常高的任务,建议改为 false,这就类似于迅雷下
载。
12 MR 输出数据的压缩
mapred-site.xml
属性: mapreduce.map.output.compress、 mapreduce.output.fileoutputformat.compress
解释:对于大集群而言,建议设置 Map-Reduce 的输出为压缩的数据,而对于小集群,则不
需要。
13 优化 Mapper 和 Reducer 的个数
mapred-site.xml
属性:
mapreduce.tasktracker.map.tasks.maximum
mapreduce.tasktracker.reduce.tasks.maximum
解释:以上两个属性分别为一个单独的 Job 任务可以同时运行的 Map 和 Reduce 的数量。
设置上面两个参数时,需要考虑 CPU 核数、磁盘和内存容量。假设一个 8 核的 CPU,业务
内容非常消耗 CPU,那么可以设置 map 数量为 4,如果该业务不是特别消耗 CPU 类型的,
那么可以设置 map 数量为 40, reduce 数量为 20。这些参数的值修改完成之后,一定要观察
是否有较长等待的任务,如果有的话,可以减少数量以加快任务执行,如果设置一个很大的
值, 会引起大量的上下文切换,以及内存与磁盘之间的数据交换,这里没有标准的配置数值,
需要根据业务和硬件配置以及经验来做出选择。
在同一时刻,不要同时运行太多的 MapReduce,这样会消耗过多的内存,任务会执行的非
常缓慢,我们需要根据 CPU 核数,内存容量设置一个 MR 任务并发的最大值,使固定数据
量的任务完全加载到内存中,避免频繁的内存和磁盘数据交换,从而降低磁盘 IO,提高性
能。
大概估算公式:
map = 2 + ⅔cpu_core
reduce = 2 + ⅓cpu_core
3、 Linux 优化
1 开启文件系统的预读缓存可以提高读取速度
$ sudo blockdev --setra 32768 /dev/sda
尖叫提示: ra 是 readahead 的缩写
2 关闭进程睡眠池
即不允许后台进程进入睡眠状态,如果进程空闲,则直接 kill 掉释放资源
$ sudo sysctl -w vm.swappiness=0
3 调整 ulimit 上限,默认值为比较小的数字
$ ulimit -n 查看允许最大进程数
$ ulimit -u 查看允许打开最大文件数
优化修改:
$ sudo vi /etc/security/limits.conf 修改打开文件数限制
末尾添加:
* soft nofile 1024000
* hard nofile 1024000
Hive - nofile 1024000
hive - nproc 1024000
$ sudo vi /etc/security/limits.d/20-nproc.conf 修改用户打开进程数限制
#* soft nproc 4096
#root soft nproc unlimited
* soft nproc 40960
root soft nproc unlimited
4 开启集群的时间同步 NTP
集群中某台机器同步网络时间服务器的时间,集群中其他机器则同步这台机器的时间。
5 更新系统补丁
更新补丁前,请先测试新版本补丁对集群节点的兼容性。
4、 Zookeeper 优化
1 优化 Zookeeper 会话超时时间
hbase-site.xml
参数: zookeeper.session.timeout
解释: In hbase-site.xml, set zookeeper.session.timeout to 30 seconds or less to bound failure
detection (20-30 seconds is a good start).该值会直接关系到 master 发现服务器宕机的最大周
期,默认值为 30 秒,如果该值过小,会在 HBase 在写入大量数据发生而 GC 时,导致
RegionServer 短暂的不可用,从而没有向 ZK 发送心跳包,最终导致认为从节点 shutdown。
一般 20 台左右的集群需要配置 5 台 zookeeper。
5、 HBase 优化
1、预分区
每一个 region维护着 startRow与 endRowKey,如果加入的数据符合某个 region维护的 rowKey范围,则该数据交给这个 region 维护。 那么依照这个原则,我们可以将数据索要投放的分区提前大致的规划好,以提高 HBase 性能。
1) 手动设定预分区
hbase> create 'staff','info','partition1',SPLITS => ['1000','2000','3000','4000']
2) 生成 16 进制序列预分区
create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
3) 按照文件中设置的规则预分区
创建 splits.txt 文件内容如下:
aaaa
bbbb
cccc
dddd
然后执行:
create 'staff3','partition3',SPLITS_FILE => 'splits.txt'
4) 使用 JavaAPI 创建预分区
//自定义算法,产生一系列 Hash 散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建 HBaseAdmin 实例
HBaseAdmin hAdmin = new HBaseAdmin(HBaseConfiguration.create());
//创建 HTableDescriptor 实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过 HTableDescriptor 实例和散列值二维数组创建带有预分区的 HBase 表
hAdmin.createTable(tableDesc, splitKeys);
2、 RowKey 设计
一条数据的唯一标识就是 rowkey,那么这条数据存储于哪个分区,取决于 rowkey 处于哪个一个预分区的区间内,设计 rowkey 的主要目的 ,就是让数据均匀的分布于所有的 region中,在一定程度上防止数据倾斜。 接下来我们就谈一谈 rowkey 常用的设计方案。
1) 生成随机数、 hash、散列值
比如:
原本 rowKey 为 1001 的, SHA1 后变成: dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本 rowKey 为 3001 的, SHA1 后变成: 49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本 rowKey 为 5001 的, SHA1 后变成: 7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的 rowKey 来 Hash
后作为每个分区的临界值。
2) 字符串反转
20170524000001 转成 10000042507102
20170524000002 转成 20000042507102
这样也可以在一定程度上散列逐步 put 进来的数据。
3) 字符串拼接
20170524000001_a12e
20170524000001_93i7
3、内存优化
HBase 操作过程中需要大量的内存开销,毕竟 Table 是可以缓存在内存中的,一般会分配整个可用内存的 70%给 HBase 的 Java 堆。但是不建议分配非常大的堆内存,因为 GC 过程持续太久会导致 RegionServer 处于长期不可用状态,一般 16~48G 内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。
4、 基础优化
1) 允许在 HDFS 的文件中追加内容
不是不允许追加内容么?没错,请看背景故事:
http://blog.cloudera.com/blog/2009/07/file-appends-in-hdfs/
hdfs-site.xml、 hbase-site.xml
属性: dfs.support.append
解释:开启 HDFS 追加同步,可以优秀的配合 HBase 的数据同步和持久化。默认值为 true。
2) 优化 DataNode 允许的最大文件打开数
hdfs-site.xml
属性: dfs.datanode.max.transfer.threads
解释: HBase 一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设
置为 4096 或者更高。默认值: 4096
3) 优化延迟高的数据操作的等待时间
hdfs-site.xml
属性: dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高, socket 需要等待更长的时间,建议把该
值设置为更大的值(默认 60000 毫秒),以确保 socket 不会被 timeout 掉。
4) 优化数据的写入效率
mapred-site.xml
属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为
true,第二个属性值修改为: org.apache.hadoop.io.compress.GzipCodec 或者其他压缩方式。
5) 优化 DataNode 存储
属性: dfs.datanode.failed.volumes.tolerated
解释: 默认为 0,意思是当 DataNode中有一个磁盘出现故障,则会认为该 DataNode shutdown
了。如果修改为 1,则一个磁盘出现故障时,数据会被复制到其他正常的 DataNode 上,当
前的 DataNode 继续工作。
6) 设置 RPC 监听数量
hbase-site.xml
属性: hbase.regionserver.handler.count
解释:默认值为 30,用于指定 RPC 监听的数量,可以根据客户端的请求数进行调整,读写
请求较多时,增加此值。
7) 优化 HStore 文件大小
hbase-site.xml
属性: hbase.hregion.max.filesize
解释:默认值 10737418240(10GB),如果需要运行 HBase 的 MR 任务,可以减小此值,
因为一个 region 对应一个 map 任务,如果单个 region 过大,会导致 map 任务执行时间过长。
该值的意思就是,如果 HFile 的大小达到这个数值,则这个 region 会被切分为两个 Hfile。
8) 优化 hbase 客户端缓存
hbase-site.xml
属性: hbase.client.write.buffer
解释:用于指定 HBase 客户端缓存,增大该值可以减少 RPC 调用次数,但是会消耗更多内
存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少 RPC 次数的目的。
9) 指定 scan.next 扫描 HBase 所获取的行数
hbase-site.xml
属性: hbase.client.scanner.caching
解释:用于指定 scan.next 方法获取的默认行数,值越大,消耗内存越大。
10) flush、 compact、 split 机制
当 MemStore 达到阈值,将 Memstore 中的数据 Flush 进 Storefile; compact 机制则是把 flush出来的小文件合并成大的 Storefile 文件。 split 则是当 Region 达到阈值,会把过大的 Region一分为二。
涉及属性:
即: 128M 就是 Memstore 的默认阈值
hbase.hregion.memstore.flush.size: 134217728
即:这个参数的作用是当单个 HRegion 内所有的 Memstore 大小总和超过指定值时, flush该 HRegion 的所有 memstore。 RegionServer 的 flush 是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发 OOM。
hbase.regionserver.global.memstore.upperLimit: 0.4
hbase.regionserver.global.memstore.lowerLimit: 0.38
即:当 MemStore 使用内存总量达到hbase.regionserver.global.memstore.upperLimit 指定值时,将会有多个 MemStores flush 到文件中, MemStore flush 顺序是按照大小降序执行的,直到刷新到 MemStore 使用内存略小于 lowerLimit